
Robust Constant-Time Cryptography

MATTHEW KOLOSICK, UC San Diego, USA
BASAVESH AMMANAGHATTA SHIVAKUMAR, MPI-SP, Germany
SUNJAY CAULIGI, MPI-SP, Germany
MARCO PATRIGNANI, University of Trento, Italy
MARCO VASSENA, Utrecht University, Netherlands
RANJIT JHALA, UC San Diego, USA
DEIAN STEFAN, UC San Diego, USA

Cryptographic library developers take care to ensure their library does not leak secrets even when there
are (inevitably) exploitable vulnerabilities in the applications the library is linked against. To do so, they
choose some class of application vulnerabilities to defend against and hardcode protections against those
vulnerabilities in the library code. A single set of choices is a poor fit for all contexts: a chosen protection could
impose unnecessary overheads in contexts where those attacks are impossible, and an ignored protection
could render the library insecure in contexts where the attack is feasible.

We introduce RoboCop, a new methodology and toolchain for building secure and efficient applications
from cryptographic libraries, via four contributions. First, we present an operational semantics that describes
the behavior of a (cryptographic) library executing in the context of a potentially vulnerable application so
that we can precisely specify what different attackers can observe. Second, we use our semantics to define a
novel security property, Robust Constant Time (RCT), that defines when a cryptographic library is secure in the
context of a vulnerable application. Crucially, our definition is parameterized by an attacker model, allowing
us to factor out the classes of attackers that a library may wish to secure against. This refactoring yields our
third contribution: a compiler that can synthesize bespoke cryptographic libraries with security tailored to the
specific application context against which the library will be linked, guaranteeing that the library is RCT in
that context. Finally, we present an empirical evaluation that shows the RoboCop compiler can automatically
generate code to efficiently protect a wide range (over 540) of cryptographic library primitives against three
classes of attacks: read gadgets (due to application memory safety vulnerabilities), speculative read gadgets
(due to application speculative execution vulnerabilities), and concurrent observations (due to application
threads), with performance overhead generally under 2% for protections from read gadgets and under 4%
for protections from speculative read gadgets, thus freeing library developers from making one-size-fits-all
choices between security and performance.

1 Introduction

“Don’t roll your own crypto” is a well known adage directed at application developers when
they are considering using cryptography in their code. Instead developers are exhorted to use
cryptographic libraries written by experts who have hopefully learned the hard-won lessons of
decades of cryptographic and software security research and practice. For such cryptographic library
developers, as well as algorithm designers, one of those hard-won lessons is that cryptographic
code must be constant time [9]. More recently (due to microarchitectural attacks like Spectre [31])
this lesson has been expanded to the requirement that, under certain circumstances, it is also crucial
for cryptographic code to be speculatively constant time [14]. Together these ensure that the code
in the library does not leak secrets (such as cryptographic keys) through either timing channels or
speculative execution, respectively, and significant work has gone into developing theory, tools,
and rules of thumb to ensure that cryptographic code is (speculatively) constant time [6, 15].
Attacks via application vulnerabilities. Sadly, this is not enough. While a constant time crypto-
graphic library will not itself leak secrets, it is but one component executing within the context of a
larger application. Security vulnerabilities in application code could themselves lead to inadvertent
disclosure of secrets, no matter how careful library authors were to avoid vulnerabilities.

1:2 M. Kolosick, B. Shivakumar, S. Cauligi, M. Patrignani, M. Vassena, R. Jhala, D. Stefan

1 int stream(u8 *c, u64 clen, u8 *n, u8 *k) {

2 ... u8 kcopy[32]; ...

3 for (i = 0; i < 32; i++) { kcopy[i] = k[i]; }

4 ...

5 while (clen >= 64) { crypto_core_salsa20(c, in, kcopy, NULL); ... }

6 ...

7 sodium_memzero(kcopy, sizeof kcopy);

8 return 0;

9 }

Fig. 1. An excerpt from the reference implementation of Salsa20 in LibSodium.

Library authors are keenly aware of this problem and routinely add protections to harden their
code against application vulnerabilities. For example, consider the excerpt of the implementation of
the Salsa20 stream cipher [10] from LibSodium [18] shown in Figure 1. We might hope that the
(elided) body being constant time suffices to ensure that the secrets in kcopy are not leaked. However
the classic constant time guarantee only ensures that stream does not leak the secrets: it makes no
guarantees about what happens if there is a memory safety vulnerability in the application linked
against the library. Such a vulnerability can lead to a read-gadget that may be used to exfiltrate
the secrets in kcopy! To defend against such gadgets, LibSodium’s developers take care to zero the
intermediate memory used in stream (Line 7) to ensure those secrets cannot be leaked through
memory vulnerabilities that reside in the application. Unfortunately, optimizations like dead-store
elimination can remove secret scrubbing and nullify the efforts of LibSodium’s developers [61].
Security vs. performance. Read gadgets are but one of several possible attacks that library
developers must defend against. For each attack, the library developer must either manually add
relevant defenses to their code, or make an explicit choice not to do so (e.g. due to prohibitive
overheads). Consequently, library code “bakes in” a subset of possible protections against application
vulnerabilities: these may be unnecessary or insufficient depending upon the application context.
For example, LibSodium’s zeroization protection against read gadgets is unnecessary when linked
against a memory safe Rust application. On the other hand, LibSodium’s protections are insufficient
against Spectre attacks [54]. The library’s authors chose to elide an appropriate fence needed to
protecting against speculative read gadgets as all the clients of the library would have to suffer the
corresponding performance degradation, not just the ones where Spectre was a legitimate concern.
In a nutshell, cryptographic library developers are currently in a difficult position: they must

make one-size-fits-all security-performance trade offs by manually inserting fragile protections
orthogonal to the cryptographic algorithms and protocols they are implementing. Luckily, secure
compilers offer a promising solution to escape this dilemma [41]. Library users are in a better
position to make security-performance trade offs and can provide a compiler with security policies
to be automatically enforced through inserted protections. To realize this vision, we introduce
RoboCop, a new methodology and toolchain for building secure and efficient applications from
cryptographic libraries. We develop RoboCop via four concrete contributions:
1. Abstraction: libraries and attackers (§3, §4.3). Our first contribution is a formal operational
semantics describing the behavior of a library executing within a potentially vulnerable application.
We further define a semantics capturing a high-level, abstract model of speculative execution, based
on the notion of a speculation oracle that “guesses” the result of evaluating an expression and then
later rolling back or committing if the guesses were correct. These semantics provide a unified
setting for precisely stating different attackers’ observations, guiding the design of our protections.
2. Specification: robust constant time (§4.2). Our second contribution is a novel security
property, robust constant time (RCT), using our model to precisely define security for a cryptographic

Robust Constant-Time Cryptography 1:3

library running in the context of a potentially vulnerable application. Crucially, our definition is
parameterized by an attacker model, capturing the set of attackers that a library is supposed to be
secure against. We further define a speculative version, robust speculative constant time, capturing
constant time in the presence of Spectre.

3. Implementation: the RoboCop compiler (§5). By factoring out assumptions about the context,
our notion of RCT enables our third contribution: a compiler that takes a cryptographic library and
synthesizes a bespoke binary tailored to the application against which the library will be linked.
To do so, we show how to map each kind of attacker to a concrete code transform that provably,
with respect to our definition of RCT, protects against that attacker. Thus, our RoboCop compiler
lets library developers focus on implementing constant-time cryptographic algorithms, without
having to worry about baking in potentially inefficient or insecure protections against application
vulnerabilities. Instead, protections can be automatically inserted based on the application context,
thereby ensuring the same library code can be securely and efficiently reused in all contexts.

4. Evaluation: SUPERCOP (§6). Finally, our fourth contribution is an empirical evaluation that
shows that our RoboCop compiler can automatically generate protections for a wide range of cryp-
tographic library code defending against a variety of attacks. Here we modify the SUPERCOP [56]
cryptographic benchmarking suite. We instrument SUPERCOP to generate and measure the overhead
of protecting against three classes of attacks: read gadgets (due to memory safety vulnerabilities in
the application), speculative read gadgets (due to speculative execution in the application), and
concurrent observations (due to threads in the application). In our test suite of 542 different imple-
mentations of cryptographic operations, we show that our RoboCop compiler can automatically
generate code that is secure against application vulnerabilities with the majority of overheads under
2% when protecting against read gadgets and under 4% when protecting against speculative read
gadgets, thereby demonstrating that RCT reconciles the tension between security and efficiency
when reusing cryptographic libraries in different application contexts.

2 Overview

Every application that works with sensitive or personal user data uses cryptography to ensure
the confidentiality or integrity of the data. These cryptographic operations typically rely upon
sophisticated mathematics and are notoriously difficult to get right: bugs or security vulnerabilities
within cryptographic code risk leaking critical secret keys or data, which could compromise the
security of the whole application. Thus, cryptographic operations are typically implemented and
encapsulated within libraries that are carefully authored and audited by cryptographic experts.
These libraries provide trusted implementations of cryptographic operations (e.g. LibSodium [18])
or protocols (e.g. OpenSSL [5]), that can then be widely reused by developers—without requiring
cryptographic expertise—to build secure applications.

In addition to correctly implementing cryptographic algorithms, the developers of cryptographic
libraries must carefully ensure their code meets certain generic security requirements. For example,
they must ensure that their libraries are constant time, meaning that the execution time of the library
must be independent of the values of the secret data that the library operates over. Otherwise,
an attacker can measure the timing variations to learn whether a secret conditioned branch or
operation went one way or the other, and from that, eventually recover the data itself. There has
been significant work [14, 16] on characterizing when a cryptographic library is constant-time
and designing recipes to write constant time code, and this work guides guides both the design of
cryptographic algorithms and their implementation in cryptographic libraries.

1:4 M. Kolosick, B. Shivakumar, S. Cauligi, M. Patrignani, M. Vassena, R. Jhala, D. Stefan

2.1 Application (attacker) assumptions

Sadly, timing leaks are not the only attacker capability cryptographic library developers need worry
about. Ultimately, libraries are not executed in isolation: they are linked against applications written
by non-expert developers: another source of vulnerabilities through which secrets can be leaked.
Defending against application vulnerabilities. Consider an application written in C that uses
the LibSodium library. If this application has a buffer overflow leading to a memory read then an
attacker targeting the whole program now has the ability to read any cryptographic secrets that
are left accessible in memory, completely bypassing the need for timing channel based attacks.

In fact, the developers of LibSodium are keenly aware of the need to defend against these potential
application vulnerabilities. Figure 1 shows an excerpt of LibSodium’s reference implementation
of the Salsa20 stream cipher. stream takes as input a key k and a nonce n and outputs a length
clen stream of pseudo random bytes in the buffer c. The developers make a copy, kcopy, of the key
buffer, k. This copied buffer contains secret data that must not be left on the stack, as otherwise
a buffer overflow in the application would let an attacker read the secret key off the stack. Thus,
in anticipation of LibSodium being used in the context of a vulnerable application, on Line 7 the
LibSodium developers invoke sodium_memzero to zero out the contents of kcopy, thereby ensuring
that its value is inaccessible regardless of memory vulnerabilities from the application.
Attacker (application) assumptions. In general, cryptographic libraries must defend against
vulnerabilities in their host applications. We capture these threats (attacker capabilities) as as-
sumptions about application behavior. We specifically adopt the threat models assumed by real
world cryptographic libraries: applications may be vulnerable to (speculative) read gadgets, but
those vulnerable to control flow hijacking (e.g., because of write gadgets) are out of scope as most
cryptographic libraries assume the application is not completely under attacker control.1

1. Attacks viamemory unsafety. The first class of assumptions, illustrated by the code in Figure 1,
is that owing to memory unsafety, there exist memory read gadgets within the application. Zeroing
buffers (like kcopy) is one key defense against such gadgets, but does nothing to prevent the attacker
from reading the original version of the key k which remains unzeroed. To protect k from read
gadgets, libraries like Libsodium offer memory protection APIs which must be manually inserted
and toggled on and off by application developers, and hence, are prone to incorrect usage.
2. Attacks via speculation. If the application is written in a memory safe language like Rust, then
the library developer need not fret about read gadgets, and can avoid the overhead of zeroing out
secrets. However, the library developer must still contend with the spectre of hardware speculation
and its attendant vulnerabilities [25, 31, 32, 35, 50, 60]. There is work on extending constant time
protections to Spectre vulnerabilities, but it focuses on protecting cryptographic code itself from
speculatively leaking secrets. Owing to the overheads imposed by such protections, it is currently
unreasonable to apply the same protections to the entirety of application code. As such, library
developers may have to contend with attacks based on Spectre vulnerabilities in the application [36].

Indeed, in the case of stream, Spectre leads to a potential security issue with the clearing of kcopy:
The LibSodium developers forgo an appropriate memory fence in sodium_memzero, leading to the
possibility of the zeroed memory being read by speculatively executing application code before it is
zeroed [54].2 The fence was eschewed due to its performance overhead: all clients of Libsodium
would suffer the performance degradation for protecting against Spectre. By manually adding or
changing protections, Libsodium’s developers implicitly restrict their defenses to certain classes of
attackers: i.e. they assume that the only application vulnerabilities are non-speculative read gadgets.

1Applications are also starting to employ software and hardware CFI techniques such as Clang’s CFI [53] and Intel’s CET [1].
2Well-documented issues with zeroing functions in high-level code make the zeroing best effort regardless of Spectre [44].

Robust Constant-Time Cryptography 1:5

1 int stream(u8 *c, u64 clen, u8 *n, u8 *k) {

2 mpk_allow_access();

3 switch_to_protected_stack();

4 u8 *c_internal = mpk_malloc(clen);

5 int y = stream_cloned(c_internal, clen, n, k);

6 memcpy(c_internal, c, clen);

7 switch_to_unprotected_stack();

8 clear_scratch_registers();

9 mpk_disable_access();

10 fence;

11 return y;

12 }

(a) Protections applied to LibSodium’s Salsa20.

10. Exit privileged mode,
fence, and return y

9. Clear scratch registers

8. Switch back to application
stack

7. Copy intermediate buffer
to public memory

6. y = F_cloned(args)

5. Create protected
intermediate buffers and copy

2–4. Switch to protected stack

1. Enter privileged mode

crypto

call

return

Transformed function F F_cloned

(b) Wrapping of cryptographic function.

Fig. 2. RoboCop protections.

3. Attacks via concurrency. The last category of application assumptions that we consider is
whether the application is concurrent. In a concurrent context, work like Spectre-Declassified [51]
has shown that an attacker can recover secret information if they can observe intermediate results,
thus enhancing the reach of (speculative) read gadgets. In fact, the possibility of such observations
are cited by the LibSodium developers as a reason to forgo thememory fence in sodium_memzero [54].

2.2 Robust constant time

Unlike with the property of constant time, there does not exist a security property capturing when a
cryptographic library is secure when running in the context of a potentially vulnerable application.
To address this and to capture the different application assumptions that a cryptographic library
developer needs to consider we introduce the notion of robust (speculative) constant time (RCT). Like
other robustness properties [2, 20, 21, 42, 43, 48, 52], a cryptographic library being robustly constant
time captures that the library does not leak secrets when linked against a context (application).
RCT serves as a formal security model for how cryptographic code is actually developed and

used: protections are applied to the libraries with the goal that their use within an as yet unknown
application will remain secure. Attacker capabilities can then be directly expressed as assumptions
about the contexts in which the library code will run. For instance, LibSodium’s implicit protections
can be explicitly specified as providing RCT assuming only the presence of single-threaded attacks
based on memory unsafety (i.e. the presence of gadgets that can perform out-of-bounds reads).

2.3 A robust constant time compiler

By factoring out security assumptions about the context, our notion of RCT lets us design and
develop a compiler that takes as input: (1) an implementation of a cryptographic library3 and (2) an
explicit set of assumptions about application/attacker capabilities and then synthesizes a protected
library that is guaranteed to be robustly constant time with respect to the given attacker. Library
developers can then focus on implementing cryptographic algorithms and their library can be used
securely and efficiently in a variety of contexts.

3Our compiler assumes that the library is already (speculatively) constant-time. In §4.2 we discuss how RoboCop’s robust
protections are orthogonal to existing (speculative) constant time protections, thus allowing library developers to use
existing automated tools or manual technique to meet this assumption.

1:6 M. Kolosick, B. Shivakumar, S. Cauligi, M. Patrignani, M. Vassena, R. Jhala, D. Stefan

Bespoke protection. Cryptographic libraries like LibSodium are designed to be used in a broad
range of applications. As we saw with libsodium_memzero, the current state of manually baking
protections into library code means that a single decision is made trading off between performance
and which contexts the library is robust against. Instead, by factoring the protections out of the
library and placing them in the compiler, RoboCop, developers can tailor protections to exactly the
level required by the particular application context. For example, when used in a memory safe Rust
application we can omit the unnecessary zeroing from LibSodium.
Efficient protection via wrapping and MPK. Our notion of RCT lets us use modern hardware
memory protections, in particular Intel™ Memory Protection Keys (MPK), to protect library code
incredibly efficiently. Our key insight in RoboCop is to allocate secret keys and carry out secret
computation within a protected memory region. To do so, RoboCop wraps the library’s external
API functions, as illustrated by the protected version of stream in Figure 2a. We first enable access to
the protected memory region and switch to a stack within protected memory. This protected stack
ensures all intermediate computation remains protected. Line 4 shows the parameterized nature of
RoboCop where we allocate a copy of the output buffer within protected memory. This allocation is
only needed when (1) the underlying implementation uses the buffer for intermediate computation,
and (2) the application context is concurrent. If these conditions are not met, RoboCop does not
generate the extra allocation (the intermediate results cannot be observed by an attacker and hence,
do not need to be protected). The wrapper function then calls the original library implementation,
stream_cloned. After encryption, we copy the internal buffer back to the publicly visible c buffer
(again, only if the attacker assumptions require.) The wrapper then switches back to the unprotected
stack, clears scratch registers (if in Spectre protection mode where these registers may contain
secret values that could be speculatively read), and finally disables access to the protected memory
region before returning to the application (additionally fencing if in Spectre protection mode).

3 Security semantics

To formally ground robust constant time and the attacker models we develop a high-level, stateful
calculus, 𝜆spec, whose syntax is shown in Figure 3. Syntactically, 𝜆spec is relatively standard, follow-
ing 𝜆rust, CompCert, and others [29, 34] in employing a block-based memory model: memory is
structured as “disjoint”, fixed width blocks addressed via a block label and offset (𝑧𝑏 [𝑧𝑜]). New blocks
are allocated with new𝑝 𝑒 with 𝑒 the size of the block and the protection label 𝑝 determines whether
the allocation is in a protected or unprotected memory “page”. The size, set of values, and memory
page are tracked in the second component of the non-speculative states (𝑆). Correspondingly there
is a protection operation, protect𝑝 , which models hardware memory protection. protect𝑝 sets
the memory access policy in the first component of the state: public only allows access to the
public memory page whereas protected allows access to all memory. Dereferences are written ! 𝑒
and assignments are written 𝑒𝑝𝑡𝑟 := 𝑒𝑣𝑎𝑙 . Functions are also stored (immutably) in memory.
We equip 𝜆spec with these semantics: a non-speculative semantics capturing a trace of events

that we use to define our attacker models (§3.1) a novel, high-level speculative semantics (§3.2),
and (speculative) concurrent semantics capturing a passive observer. Throughout this work we use
• for an empty list, ⋄ for list concatenation, and an overline (e.g. 𝑒) for a list of elements.

3.1 Non-speculative trace semantics

We first describe the structure of the traces the non-speculative semantics is designed to capture.
Traces. We are interested in capturing three aspects of the execution: (1) who (which party, app or
lib) is executing code at a given time as well as the transfer of control between the parties, (2) what
memory each party accesses, and (3) the internal branching which will be used to define the various

Robust Constant-Time Cryptography 1:7

labels ℓ ::= app | lib
protection 𝑝 ::= public | protected

values 𝑣 ::= 𝑧 | 𝑧 [𝑧]
expressions 𝑒 ::= 𝑣 | 𝑥 | 𝑥{𝑣} | op(𝑒) | 𝑒 [𝑒] | ! 𝑒 | new𝑝 𝑒 | 𝑒 := 𝑒 | protect𝑝 | 𝑒; 𝑒

| get-block 𝑒 | get-offset 𝑒 | 𝑒 (𝑒) | fence | if 𝑒 then 𝑒 else 𝑒
states 𝑆 : 𝑝 × (Z ⇀𝑚)

memory slots 𝑚 : {size : Z, 𝑝 : 𝑝, 𝑣 : [size] ⇀ 𝑣} | 𝜆ℓ𝑥 .𝑒

events 𝜖 ::= 𝛿 ℓ | 𝜏 ℓ�ℓ
transition events 𝜏 ::= call 𝑧𝑓 | ret 𝑣 | begin | end 𝑣
domain events 𝛿 ::= 𝜇 | call 𝑧 | ret 𝑣 | branch 𝑣 | fence | 0
memory label 𝑏 ::= ib | oob

memory events 𝜇 ::= new𝑝 𝑧@𝑧 | read𝑏 𝑣 ← [𝑧 [𝑧] | write𝑏 𝑣 ↦→ 𝑧 [𝑧] | protect𝑝
observable events 𝑐 ::= 0 | branch 𝑣 | read←[𝑧 [𝑧]

| write ↦→ 𝑧 [𝑧] | new𝑝 𝑧@𝑧 | call 𝑧 | end 𝑣

speculation frame Ξ : �(𝑆, 𝐾 :: 𝑒, 𝛿) | (𝑆, 𝐾 :: 𝑒, 𝛿, 𝜇)
speculative states Φ : {𝑆 : 𝑆, 𝑎 : 𝐴,Ξ : Ξ}

speculation directives 𝑑 ::= nonspec | spec 𝑣 | fence

Fig. 3. 𝜆spec syntax

constant time properties. To this end each reduction is labeled with an event, 𝜖 , whose syntax is
shown in Figure 3. Labels are also attached to every function (𝜆ℓ𝑥 .𝑒) to distinguish application and
library code. An event is either a labeled domain event, 𝛿 ℓ , which captures an event executed by the
party ℓ or a transition event, 𝜏 ℓ�ℓ , which captures the transfer of control between the two parties.

The main transition events are call 𝑧𝑓 and ret 𝑣 which represent a call to the function at address
𝑧𝑓 and returning from a function with return value 𝑣 . Beyond the call and return events, there are
begin and end 𝑣 events that capture the (implicit) beginning and end of a trace. Domain events are
either a memory event (𝜇), a call 𝑧𝑓 and its corresponding ret 𝑣 events (capturing a function call
that stays within a single domain), a branch 𝑣 event (capturing branching on the value 𝑣), or the
empty event 0. Memory events are one of an allocation, a protection operation, a read, or a write
and track the data associated with each operation (e.g. the value read/written, the location it was
read/written from/to, and whether the memory access was in bounds or out of bounds).
Transition operational semantics. Our non-speculative semantics are split between two labeled
reduction judgments: top-level transition reductions and domain reductions (Figure 4). Transition
reductions are of the form ⟨𝑆 | 𝐾 ℓ :: 𝑒ℓ⟩ 𝜖

=⇒ ⟨𝑆 | 𝐾 ℓ :: 𝑒ℓ⟩ where 𝐾 are the standard call-by-value
evaluation contexts. The state 𝑆 tracks the memory and the current access level. To explain the
control stack 𝐾 ℓ :: 𝑒ℓ we examine the rule red-call. The top of our stack (𝑒ℓ) is the mid-reduction
body of the currently executing function (with label ℓ). For red-call we are reducing a function
call in the evaluation context 𝐾 . We push this continuation (where the called function will return
to) onto the stack of labeled continuations (𝐾 ′ℓ ′) and then use the substituted body as the new
execution frame. If the current label, ℓ , and the label of the function we are calling, ℓ𝑓 , differ then
we emit a transition event with label ℓ�ℓ𝑓 otherwise we omit a domain event for the call.

Dually, rule red-ret handles returning from a function. This is a transfer of control flow from ℓ ,
the label of the currently executing function, back to ℓ𝐾 , the function caller. The return value is
plugged into the top continuation on the stack and a corresponding return event is generated (we

1:8 M. Kolosick, B. Shivakumar, S. Cauligi, M. Patrignani, M. Vassena, R. Jhala, D. Stefan

⟨𝑆 | 𝐾 ℓ :: 𝑒ℓ⟩ 𝜖=⇒ ⟨𝑆 | 𝐾 ℓ :: 𝑒ℓ⟩

red-call

𝑆 (𝑧) = 𝜆ℓ𝑓 𝑥 .𝑒 𝜖 =

{
(call 𝑧)ℓ when ℓ𝑓 = ℓ
(call 𝑧)ℓ�ℓ𝑓 otherwise

⟨𝑆 | 𝐾 ′ℓ ′ :: 𝐾 [𝑧 (𝑣)]ℓ⟩ 𝜖=⇒ ⟨𝑆 | 𝐾 ′ℓ ′ :: 𝐾 ℓ :: 𝑒 [𝑣/𝑥]ℓ𝑓 ⟩

red-ret

𝜖 =

{
(ret 𝑣)ℓ when ℓ𝐾 = ℓ

(ret 𝑣)ℓ�ℓ𝐾 otherwise

⟨𝑆 | 𝐾 ′ℓ ′ :: 𝐾 ℓ𝐾 :: 𝑣 ℓ⟩ 𝜖=⇒ ⟨𝑆 | 𝐾 ′ℓ ′ :: 𝐾 [𝑣]ℓ𝐾 ⟩

red-𝛽

⟨𝑆 | 𝑒⟩ 𝛿−→ ⟨𝑆 ′ | 𝑒′⟩

⟨𝑆 | 𝐾 ′ℓ ′ :: 𝐾 [𝑒]ℓ⟩ 𝛿
ℓ

==⇒ ⟨𝑆 ′ | 𝐾 ′ℓ ′ :: 𝐾 [𝑒′]ℓ⟩

⟨𝑆 | 𝑒⟩ 𝛿−→ ⟨𝑆 | 𝑒⟩
𝛽-deref

accessible(𝑆, 𝑧𝑏)
𝑧𝑜 ∈ [𝑆 (𝑧𝑏).size)] 𝑣 = 𝑆 (𝑧𝑏).𝑣 (𝑧𝑜)

⟨𝑆 | ! (𝑧𝑏 [𝑧𝑜])⟩
readib 𝑣←[𝑧𝑏 [𝑧𝑜]−−−−−−−−−−−−→ ⟨𝑆 | 𝑣⟩

𝛽-new
𝑧 > 0 𝑧𝑏 = fresh(𝑆) 𝑆.𝑝 ⊑ 𝑝
𝑆 ′ = 𝑆 [𝑧𝑏 := {size = 𝑧, 𝑣 = ⊥, 𝑝 = 𝑝}]

⟨𝑆 | new𝑝 𝑧⟩
new𝑝 𝑧@𝑧𝑏−−−−−−−−−→ ⟨𝑆 ′ | 𝑧𝑏 [0]⟩

𝛽-deref-oob
𝑧𝑏 ∉ dom(𝑆) ∨ 𝑧𝑜 ∉ [𝑆 (𝑧𝑏).size] 𝑧′

𝑏
∈ dom(𝑆)

𝑧′𝑜 ∈ [𝑆 (𝑧′𝑏).size)] 𝑣 = 𝑆 (𝑧′
𝑏
).𝑣 (𝑧′𝑜) accessible(𝑆, 𝑧′

𝑏
)

⟨𝑆 | ! (𝑧𝑏 [𝑧𝑜])⟩
readoob 𝑣←[𝑧′

𝑏
[𝑧′𝑜]−−−−−−−−−−−−−→ ⟨𝑆 | 𝑣⟩

𝛽-subst

⟨𝑆 | 𝑥{𝑣}⟩ 0−→ ⟨𝑆 | 𝑣⟩

Fig. 4. Non-speculative trace semantics excerpts

ignore same domain returns). The last “transition” reduction rule, red-𝛽 , dispatches to the domain
reduction relation (⟨𝑆 | 𝑒⟩ 𝛿−→ ⟨𝑆 | 𝑒⟩), and labels the domain event 𝛿 with the current label.

Domain operational semantics.Most of the domain rules are standard and produce an empty
trace event. Conditionals are also standard, but produce a branch event based on the condition. The
rule 𝛽-new takes a protection domain 𝑝 in which to allocate a new block of size 𝑧, checking that
our current access level allows writing to the domain 𝑝 using the “can-access” judgment 𝑆.𝑝 ⊑ 𝑝 .

The most notable of the reduction rules are those related to dereferencing and writing through
pointers. The rules mirror each other so we will focus on dereferencing as it is simpler. In the rule
𝛽-deref we are dereferencing the pointer 𝑧𝑏 [𝑧𝑜] with block label 𝑧𝑏 and offset into that block 𝑧𝑜 . To
actually obtain the value at that location the following must hold: (1) the block must be accessible
(accessible(𝑆, 𝑧𝑏)), (2) the offset must be within the allocated size of the block (𝑧𝑜 ∈ [𝑆 (𝑧𝑏).size]),
and (3) a value must have been written to the block at the offset 𝑧𝑜 (𝑣 = 𝑆 (𝑧𝑏).𝑣 (𝑧𝑜)). When these
conditions are met the value is read and a corresponding in bounds read trace event is generated.
On the other hand, if either of the latter two conditions are not met the dereference is considered
out-of-bounds and the rule 𝛽-deref-oob applies instead. Here, we model the out-of-bounds read as
a nondeterministic read from an arbitrary, valid, and accessible location 𝑧′𝑜 [𝑧′𝑏].

Robust Constant-Time Cryptography 1:9

⟨Φ | 𝐾 :: 𝑒⟩↩𝛿−→→⟨Φ | 𝐾 :: 𝑒⟩
spec-nonspec
(𝑎′, nonspec) = spec(Φ.𝑎, 𝑒)
⟨Φ | 𝐾 :: 𝑒⟩ 𝛿

↩−→ ⟨Φ′ | 𝐾 ′ :: 𝑒′⟩

⟨Φ | 𝐾 :: 𝑒⟩↩𝛿−→→⟨Φ′ [𝑎 := 𝑎′] | 𝐾 ′ :: 𝑒′⟩

spec-try-commit
(𝑎′, fence) = spec(Φ.𝑎, 𝑒)

fence ⟨Φ | 𝐾 :: 𝑒⟩ to ⟨Φ′ | 𝐾 ′ :: 𝑒′⟩
𝛿

⟨Φ | 𝐾 :: 𝑒⟩↩𝛿−→→⟨Φ′ [𝑎 := 𝑎′] | 𝐾 ′ :: 𝑒′⟩

spec-spec

(𝑎′, spec 𝑣) = spec(Φ.𝑎, 𝐾 [𝑒]) ⟨Φ | • :: 𝑒⟩ 𝛿
↩−→∗ ⟨Φ′ | • :: 𝑣 ′⟩

Ξ′ = makeFrame𝑣=𝑣′ (Φ.𝑆, 𝐾 ′ :: 𝐾 [𝑒], 𝛿) :: Φ.Ξ 𝑒 ≠ fence

⟨Φ | 𝐾 ′ :: 𝐾 [𝑒]⟩↩0−→→⟨Φ[Ξ := Ξ′, 𝑎 := 𝑎′] | 𝐾 ′ :: 𝐾 [𝑣]⟩

⟨Φ | 𝐾 :: 𝑒⟩ 𝛿
↩−→ ⟨Φ | 𝐾 :: 𝑒⟩

spec-𝛽

⟨Φ.𝑆 | 𝐾 ℓ :: 𝑒ℓ⟩ 𝜖=⇒ ⟨𝑆 ′ | 𝐾 ′ℓ ′ :: 𝑒′ℓ
′
⟩

¬stalled(Φ.Ξ,Φ.𝑆, unlabel(𝜖)) Ξ = addEvent(Φ.Ξ, unlabel(𝜖))

⟨Φ | 𝐾 :: 𝑒⟩
unlabel(𝜖)
↩−−−−−−−→ ⟨Φ[𝑆 := 𝑆 ′,Ξ := Ξ] | 𝐾 ′ :: 𝑒′⟩

Fig. 5. Small step speculative semantics

stalled(Ξ, 𝑆, 𝛿) : Ξ × 𝑆 × 𝛿 → 2

stalled(•, 𝑆, fence) = ⊤
stalled(Ξ :: Ξ, 𝑆, read𝑏 𝑣 ←[𝑧𝑏 [𝑧𝑜]) = (protect𝑝 ∈ Ξ.𝛿 ⋄Ξ.𝜇 ∧ 𝑆 (𝑧𝑏).𝑝 = protected)

∨ (stalled(Ξ, 𝑆, read𝑏 𝑣 ← [𝑧𝑏 [𝑧𝑜]))
addEvent(Ξ, 𝛿) : Ξ × 𝛿 → Ξ

addEvent((𝑆, 𝐾 :: 𝑒, 𝛿, 𝜇), read𝑏 𝑣 ← [𝑣𝑟) =
�(𝑆, 𝐾 :: 𝑒, 𝛿 ⋄ 𝜇) when 𝑣𝑟 ∈ writeLocs(𝛿)

addEvent((𝑆, 𝐾 :: 𝑒, 𝛿, 𝜇),write𝑏 𝑣 ↦→ 𝑣𝑤) = (𝑆, 𝐾 :: 𝑒, 𝛿, 𝜇 ⋄write𝑏 𝑣 ↦→ 𝑣𝑤)
fence ⟨Φ | 𝐾 :: 𝑒⟩ to ⟨Φ | 𝐾 :: 𝑒⟩

𝛿

fence-rollback

Φ.Ξ =
�(𝑆, 𝐾 ′ :: 𝑒′, 𝛿) :: Ξ

Φ′ = Φ[𝑆 := 𝑆,Ξ := Ξ]
fence ⟨Φ | 𝐾 :: 𝑒⟩ to ⟨Φ′ | 𝐾 ′ :: 𝑒′⟩•

fence-commit
Φ.Ξ = (𝑆, 𝐾 ′ :: 𝑒′, 𝛿, 𝜇) :: Ξ 𝑆 ′ = commit(𝑆, 𝛿 ⋄ 𝜇)
Ξ′ = addEvents(Ξ, 𝛿 ⋄ 𝜇) Φ′ = Φ[𝑆 := 𝑆 ′,Ξ := Ξ′]

fence ⟨Φ | 𝐾 :: 𝑒⟩ to ⟨Φ′ | 𝐾 :: 𝑒⟩
𝛿

Fig. 6. Speculative semantics auxiliary definitions

3.2 Speculative semantics

To model Spectre and speculative execution broadly we define a second operational semantics for
𝜆spec. Instead of modeling a specific version of Spectre we seek to capture a high-level essence
of speculation, namely that speculation is the combination of guessing how an expression might
evaluate and then either rolling back or committing if the guess was correct. That is, different types

1:10 M. Kolosick, B. Shivakumar, S. Cauligi, M. Patrignani, M. Vassena, R. Jhala, D. Stefan

of speculation can be captured as the following sequence: First, instead of evaluating an expression,
make up the value you think it would evaluate to and continue running using that value instead.
While running “under speculation” check if any operation invalidates the speculative guess. Then,
once you hit a “fence”, rollback to the speculation point if the guess was invalid, or commit the
effects of the skipped expression and continue evaluating.

We capture (excerpts of) these notions in Figures 5 and 6. Figure 5 defines the top-level reduction

relation ⟨Φ | 𝑒⟩↩𝛿−→→⟨Φ | 𝑒⟩. Speculative states, Φ, extend the non-speculative state (𝑆) with a
microarchitectural state (𝑎) and a stack of speculation frames (Ξ). Speculation frames come in two
forms, a “mispeculation” frame, �(𝑆, 𝑒, 𝛿), capturing that the current speculation is invalid and will
be rolled back to the state 𝑆 and expression 𝑒 and “in progress” frames, (𝑆, 𝑒, 𝛿, 𝜇), capturing that
the current speculation is potentially valid. The 𝛿 and 𝜇 components capture the trace of events of
the skipped expression and the subsequent memory events, respectively. The skipped events are
used if we commit a speculative frame, “replaying” the events that were speculatively passed over,
and the memory events are used to determine whether speculation is invalid (discussed below).
The decision of whether and how to speculate is handled by a microarchitectural state “specu-

lation” function (spec : 𝐴 × 𝑒 → 𝐴 × 𝑑). The function takes the current microarchitectural state
and the current state of the executing function, updates the microarchitectural state, and returns a
speculation directive, 𝑑 . This directive says whether we will be speculating with the guessed value
𝑣 (spec 𝑣), not speculating (nonspec), or performing a fence operation (fence).

Speculation. To see how speculation plays out we will go over the three corresponding rules:
spec-nonspec, spec-spec, and spec-try-commit and how they capture speculation in the classic Spectre
exploit of bypassing a bounds check when evaluating if 𝑖{100} < 10 then !𝑏 [𝑖{100}] else 0
(where the size of the block 𝑏 is 10). The term 𝑖{100} captures a delayed substitution: earlier in
the execution the value 100 was substituted for 𝑖 .4 We first evaluate the term 𝑖{100} and apply the
rule spec-nonspec: the speculator returns that it does not want to speculate on this expression and
evaluation proceeds normally (via the spec-𝛽 rule) so our branch condition is now 100 < 10. Here
the speculator consults its microarchitectural state and sees that every other time we have done this
check the result has been true. The speculator thus returns spec 1 (and a new microarchitectural
state) and the rule spec-spec applies. spec-spec runs the skipped expression capturing any memory
events (writes, reads, etc.) but does not commit them, instead saving them in a new speculation
frame via makeFrame. makeFrame checks if the speculated value matches the real value: in this
case it does not and therefore our new frame is a mispeculation frame saving the current state
and continuation on our stack Ξ. From here evaluation continues with the speculated value 1 and
another two spec-nonspec steps evaluate !𝑏 [100].

In these spec-nonspec steps the rule spec-𝛽 handles two additional aspects beyond the evaluation.
First, it checks that the instruction is not stalled (¬stalled(Φ.Ξ,Φ.𝑆, unlabel(𝜖))).5 This captures
that fence instructions will not execute speculatively and that, with MPK, writes and reads to
protected memory will not execute if the protection level is speculatively uncertain (the rules
for fences and reads are shown in Figure 6). spec-𝛽 also adds the new event to the speculative
stack (Ξ = addEvent(Φ.Ξ, unlabel(𝜖))), updating whether the current speculation is invalid or not.
Excerpts of addEvent are shown in Figure 6. For reads it checks if the read is to the location of a
speculatively skipped write: if so the current speculation is invalid and will be rolled back (but

4We use delayed substitutions (𝛽-subst) to capture the fact that, when executing on hardware, argument substitution will
be compiled to a register access or memory lookup and as such should not be treated as an immediate value.
5The unlabel function removes labels and is defined in Appendix A.

Robust Constant-Time Cryptography 1:11

API contexts Γ ::= (𝑓 : 𝑧) app traces 𝐴 ::= 𝜏lib�app ⋄ 𝛿app ⋄ 𝜏app�lib

libraries 𝐿 ::= 𝑓 ↦→ (𝑧𝑓 , 𝜆𝑥 .𝑒) lib traces 𝐿 ::= 𝜏app�lib ⋄ 𝛿lib ⋄ 𝜏lib�app

secret contexts Δ ::= 𝑥 ↦→ (𝑧𝑙𝑜𝑐 , 𝑧𝑙𝑒𝑛) traces 𝑇 ::= 𝐴 ◦ 𝐿 ◦𝑇
heaplets 𝐻 : Z ⇀𝑚 | 𝜏lib�app ⋄ 𝛿app ⋄ end 𝑣app�lib

Fig. 7. Syntax of programs and traces

continues executing until a fence). The displayed rule for writes shows how other events are added
to an in progress frame to be used to check the validity of previous speculation.
Back in our example, were we to continue evaluating we would reach the classic Spectre out

of bounds read, however we will instead assume that the speculator decides to stop speculating
and returns the fence directive. The rule spec-fence thus applies and we turn to the judgment
fence ⟨Φ | !𝑏 [100]⟩ to ⟨Φ1 | 𝑒1⟩𝛿 . This judgment, defined in Figure 6, returns the state and
expression with which we will continue evaluation as well as the trace of events from evaluating
the speculatively skipped expression. If the speculation was invalidated (fence-rollback) then we
will return to the continuation where speculation began (this applies to our example and we return
to the saved continuation if 100 < 10 then !𝑏 [𝑖{100}] else 0 and the respective state at the time
of speculation). If the speculation had been valid then fence-commit would apply. This commits
any memory events that were speculatively skipped and checks whether the new, now committed
events invalidate previous speculation (we allow nested speculation thus the speculative “stack”).

3.3 Concurrent observer semantics

To capture concurrent observer capabilities we layer another semantics on top of both the specula-
tive and non-speculative semantics. We show the new judgment for the concurrent speculative
semantics below. It consists of a singular rule that, before any step, adds a read event for every
memory location visible to a concurrent thread. As MPK guarantees thread local protection this
consists of every location that is not in the protected memory region, even if our “main” thread
currently has access to protected memory. The non-speculative version is defined similarly.

⟨Φ | 𝐾 :: 𝑒⟩↩𝛿−→→⟨Φ′ | 𝐾 ′ :: 𝑒′⟩ 𝛿 ′ = [branch 𝑣 | ⟨Φ[𝑆.𝑝 := public] | ! 𝑧𝑏 [𝑧𝑜]⟩
𝜇
↩−→ ⟨Φ′ | 𝑣⟩]

⟨Φ | 𝐾 :: 𝑒⟩ ↩𝛿
′⋄𝛿−−−→→C ⟨Φ′ | 𝐾 ′ :: 𝑒′⟩

4 Robust constant time

Next we formalize the security semantics of cryptographic libraries when used within an application.

4.1 Programs and Traces

Figure 7 shows the syntax for defining libraries and applications.
Libraries. An API context, Γ is a map from function names to the number of arguments that
function takes and defines the external API for a library. Given an API context Γ a library 𝐿 is a set
of functions and their heap locations for each of the external names in Γ. We capture this with the
well-formedness judgment Γ ⊨ 𝐿, which additionally allows 𝐿 to contain internal functions (defined
in Figure 17 in Appendix B).
Applications.We assume that secrets are stored in memory. A secret context Δ is a map from secret
variable names 𝑥 (used to refer to that secret block in application code) to a pair of integer values
denoting the location (address) and length of the corresponding block. Given an API context Γ and
a secret context Δ, an application is a pair of a heaplet 𝐻 (a partial heap containing initial state and

1:12 M. Kolosick, B. Shivakumar, S. Cauligi, M. Patrignani, M. Vassena, R. Jhala, D. Stefan

application functions), and a “main” expression 𝑒 with free variables from Γ and Δ. We define a
well-formedness judgment for applications Γ,Δ ⊢ (𝐻, 𝑒) (detailed in Figure 17 in Appendix B).
Programs. A whole program is then composed of a library 𝐿 plugged into an application (𝐻, 𝑒). To
define this we build a judgment 𝐿 | Δ | 𝐻 ⊨ 𝑆 (defined in Figure 17 in Appendix B). This captures
that the initial state 𝑆 (1) contains all of the functions defined in 𝐿, (2) contains locations for all of
the secrets in Δ, and (3) contains the application heaplet 𝐻 . We then define substitution operations
𝑒 [Δ] [𝐿] and 𝑆 [Δ] [𝐿] replacing the API variable names from Γ with the function locations in 𝐿 and
the secret variables in Δ with their actual block locations (defined in Figure 18 in Appendix B).
Program Traces. Our operational semantics captures a sequence of events, but for whole programs
we factor this sequence into a program trace (𝑇) with additional structure (shown in Figure 7). This
trace captures the decomposition of execution into alternating sequences of application and library
domain events, with transition events the boundaries between them. Application traces 𝐴 are thus
a transition event from library to application, followed by a sequence of application domain events,
and then a transition back to the library. Library traces are defined similarly and the trace of an entire
program is then alternating sequences of these application and library traces. For program traces
we define a gluing concatenation operator 𝜖1𝜖 ◦ 𝜖𝜖2 which matches the sequence 𝜖1𝜖𝜖2. We use this
to capture that the transition event ending an application trace and starting the subsequent library
trace are in fact the same transition event. We then define trace and speculative trace metafunctions
capturing the set of all program traces for a given program (the corresponding concurrent versions
are as expected). These use the respective non-speculative and speculative termination judgments
↓𝑇 and ↓𝛿S (which capture the terminating trace and are defined in Appendix B):

traces(⟨𝑆 | 𝑒⟩) ≜ {begin ⋄𝑇 ⋄ end 𝑣 | ⟨𝑆 | 𝑒⟩ ↓𝑇 ⟨𝑆 ′ | 𝑣⟩}
specTraces(⟨Φ | 𝑒⟩) ≜ {begin ⋄ 𝛿 ⋄ end 𝑣 | ⟨Φ | 𝑒⟩ ↓𝛿S ⟨Φ

′ | 𝑣⟩}

4.2 Robust constant time

Our core security property, robust constant time, much like classic constant time, comes in two
flavors: speculative and non-speculative (we also separate the associated concurrent versions).
Attacker predicates. Intuitively, robust constant time captures that a library behaves correctly
when plugged into an “unknown” context (in this case an application) representing an attacker.
For cryptographic libraries the attacker attempts to exploit vulnerabilities in the application to
extract secrets, so we parameterize our definition by an attacker: a predicate on applications,
predΓ,Δ : ℘(𝐻, 𝑒) that captures a vulnerability as a set of applications with that vulnerability. We
instantiate predΓ,Δ in Section 4.3 to capture read-only and memory-safe attackers.
Robust constant time. Robust constant time, then, is a parameterized, robust version of classic
constant time definitions. Let ct : 𝜖 → 𝑐 be a meta-function that erases the components of the trace
that are not visible from timing-based attacks (defined by the syntactic class of observable events
in Figure 3). Robust constant time can thus be defined as follows:

Definition 1 (Robust constant time). We say a library Γ ⊨ 𝐿 is robustly constant time for an
attacker class predΓ,Δ if, for all secret contexts Δ, applications Γ,Δ ⊢ (𝐻, 𝑒) such that predΓ,Δ (𝐻, 𝑒),
and initial states 𝑆0, 𝑆 ′0 such that 𝐿 | Δ | 𝐻 ⊨ 𝑆0 = 𝑆 ′0 we have that ct(traces(⟨𝑆0 [Δ] [𝐿] | 𝑒 [Δ] [𝐿]⟩)) =
ct(traces(⟨𝑆 ′0 [Δ] [𝐿] | 𝑒 [Δ] [𝐿]⟩)).
The judgment 𝐿 | Δ | 𝐻 ⊨ 𝑆0 = 𝑆 ′0 is a variant of our well-formedness judgment for initial

states capturing that 𝑆0 and 𝑆 ′0 only vary at the secret locations contained in Δ. Robust speculative
constant time is defined similarly, however we consider the speculative traces and a speculative
attacker oracle spec : 𝐴 × 𝑒 → 𝐴 × 𝑑 (capturing varying speculative attacks). The concurrent
versions simply use the set of concurrent traces. These definitions can be found in Appendix B.1.

Robust Constant-Time Cryptography 1:13

Γ ⊢ read-only 𝑇

read-only-rec
𝐴 = 𝜏1

lib�app ⋄ 𝛿𝐴app ⋄ 𝜏2app�lib 𝐿 = 𝜏2
app�lib ⋄ 𝛿𝐿lib ⋄ 𝜏3lib�app

𝜏2 = call 𝑧𝑓 ⇒ 𝑧𝑓 ∈ dom(Γ) wf-read-only 𝛿𝐴 wf-read-only 𝛿𝐿 =⇒ Γ ⊢ read-only 𝑇
Γ ⊢ read-only 𝐴 ◦ 𝐿 ◦𝑇

Fig. 8. Excerpt of read-only attacker model definition

4.3 Attackers

As discussed in Section 2.1 we wish to protect libraries against different kinds of application vulner-
abilities: read-only vulnerabilities (corresponding to the attacker model libraries like LibSodium
assume), speculative vulnerabilities, and concurrent observers. Speculative vulnerabilities and
concurrent observers are captured by our speculative and concurrent semantics leaving us with
non-speculative read-only attackers (which we contrast with memory-safe attackers such as those
written in memory-safe languages). We will use the fact that our traces 𝑇 capture the back and
forth of actions of the application and library and the hand-offs between them to instantiate the
predicate of Definition 1. We then define read-only and memory-safe attackers by restricting the
set of unsafe behaviors during the application subtraces: Read-only attackers can read memory
they were not given access to but cannot write to it (and thus cannot carry out active attacks). In
contrast, memory-safe attackers may neither read nor write memory they were not given access to.
We define both read-only and memory-safe attackers as excluding control-flow exploits.

We wish to capture sets of attackers by their trace properties, however the attacker predicate
is defined as a property of applications which are only a partial program and cannot be run. As
such we must first link with a library before we can assess the application’s (mis)behavior. But we
cannot simply take an arbitrary library: an ill-formed library can break application invariants. To
untangle this knot we simultaneously define the relevant restrictions on the application we are
classifying with the assumptions that it may make about the library that it is running against.

Definition 2 (Read-only attackers). We say an application Γ,Δ ⊢ (𝐻, 𝑒) is a read-only attacker
if, for all libraries Γ ⊨ 𝐿, initial states 𝑆0 such that 𝐿 | Δ | 𝐻 ⊨ 𝑆0, and traces 𝑇 ∈ traces(⟨𝑆0 [Δ] [𝐿] |
𝑒 [Δ] [𝐿]⟩), Γ ⊢ read-only 𝑇 .

Figure 8 shows an excerpt of the judgment Γ ⊢ read-only 𝑇 which handles the restrictions on
the application and assumptions on the library components of the trace 𝑇 . The rule read-only-rec
captures the back and forth of assumptions and restrictions: it decomposes the next applica-
tion and library trace sequences, imposes the read-only restrictions on the application events
(wf-read-only 𝛿𝐴), requires that the call into the library is an API function, and then, under the
assumption that the library events do not write out of bounds, inductively requires that the rest
of the trace is read-only. The definition of wf-read-only can be found in Figure 19 in Appendix B:
it captures that the application trace can only contain in bounds write events, but may contain
arbitrary read events. Memory-safe attackers are defined similarly, with the predicate adjusted to
also preclude reads from unexposed blocks.

5 A robust compiler

Guided by our formal models we develop RoboCop, a compiler providing robust constant time
protections for cryptographic libraries against different attackers. RoboCop is built on top of the
LLVM framework [33] and uses Intel™ Memory Protection Keys (MPK) to guarantee that secret
data (cryptographic secrets and the data derived from them) is only accessible while executing

1:14 M. Kolosick, B. Shivakumar, S. Cauligi, M. Patrignani, M. Vassena, R. Jhala, D. Stefan

trusted cryptographic library code. While RoboCop mainly operates on the library, there are two
components that involve the application. First, cryptographic secrets often originate and are man-
aged by application code, and it is therefore necessary to allocate these secrets in protected memory.
To do so we provide manual MPK allocation APIs and also adapt techniques from CryptoMPK [28]
to provide an alternative, automatic application transformation that securely allocates secrets.
Further, for the efficiency of our library protections, we reuse a single stack allocated in protected
memory. To enable this we develop a simple LLVM pass that allocates this stack on program entry.

5.1 Making libraries robust

Cryptographic code operates directly on secret data and, to prevent timing-based leaks, is required
to be constant time. With this baseline security requirement we operate under the assumption that
cryptographic code is trusted. The task of RoboCop then is to ensure that the secret data remains
inaccessible even if there are vulnerabilities within the client application code. These protections are
provided in three steps: (1) Cryptographic developers label the external API functions. (2) RoboCop
wraps these API functions to handle the memory isolation. (3) RoboCop replaces all dynamic
memory functions (malloc and similar) with custom MPK compatible versions, ensuring that all
memory allocated within the cryptographic library is kept within the protected domain.

Figure 2b shows our wrapping of cryptographic API functions. For every exported function F in
the library, a clone, F_cloned, is generated containing the original implementation of F. Internal
calls to F are replaced with calls to F_cloned: F becomes the external API wrapper for use by the
client. F is responsible for switching into and out of the protected memory region.
The new F takes the following domain switching steps: (1) We enable access to the protected

memory region with a wrpkru instruction. The specification for MPK [27] ensures this is specu-
latively secure: wrpkru will not execute speculatively and protected memory cannot be accessed
until wrpkru is committed. (2) We get the address of the protected stack and save the current stack
pointer. (3) We copy any stack arguments from the unprotected frame to the new protected stack.
(4) We switch the stack pointer to the protected stack frame. (5) If concurrent protections are
enabled, we allocate an internal copy buffer for the external buffers (discussed below). (6) We call
F_cloned. (7) After the cryptographic function returns, we copy any internal buffers back to the
original, public buffers. (8) We restore the previous stack pointer. (9) We clear all scratch registers
which may potentially contain transient secret computation. (10) We disable access to protected
memory, fence if speculative protections are enabled, and return to the application. Together these
ensure that all data produced and used by the cryptographic code is within the protected memory
region and the region is inaccessible to application code.

Concurrent protections. Rather than allocate extra memory, cryptographic algorithms sometimes
carry out intermediate computations within output (often ciphertext) buffers. In a single-threaded
context, this is safe as there is no way for client code to access these buffers before they contain
their final, declassified (cryptographically secure) value. In a concurrent context, work like Spectre-
Declassified [51] has shown that an attacker can recover secret information if they can observe
intermediate results. To defend against these attacks we add a concurrent protection option to
RoboCop. Here library developers additionally annotate API arguments that are used for interme-
diate computation, and RoboCop allocates memory for the arguments within protected memory,
performs the intermediate work within the protected domain, and then copies the declassified
result back out to the unprotected memory.

Robust Constant-Time Cryptography 1:15

5.2 Proving RoboCop secure

On its own (concurrent) robust (speculative) constant time serves as a useful security property
for understanding when library protections are secure against different attackers. However we
are interested in automatically providing robust protections via RoboCop. To do so we need to
understand our “source language”: the assumptions we make about the source of our compilation.
For RoboCop we assume that the source is classically (speculative) constant time and will prove
that RoboCop then guarantees robust (speculative) constant time. This gives library developers
flexibility: they can safely use any tool or handwritten technique to guarantee that their library
implementation is constant time and then RoboCop lifts this to the robust counterpart.
In defining a “source language” that captures classic constant time, note that the classic notion

of constant time is that executing a library function produces invariant traces. As such classic
constant time is in fact a restricted form of robust constant time, where, for a given API context Γ,
the main function is defined by the grammar 𝑒Γ ::= 𝑓 (𝑣) for 𝑓 ∈ Γ. That is, “source applications”
are simply individual function calls into the library. There is a slight caveat: classical constant time
also requires that secrets have not leaked into the application state. With this in mind we define
classical constant time as the following variation on robust constant time:

Definition 3 (Classical constant time). We say a library Γ ⊨ 𝐿 is classically constant time
if, for all secret contexts Δ, classical “applications” Γ,Δ ⊢ (𝐻, 𝑒Γ), and initial states 𝑆0, 𝑆 ′0 such that
𝐿 | Δ | 𝐻 ⊨ 𝑆0 = 𝑆 ′0, we have that for all traces ⟨𝑆0 [Δ] [𝐿] | 𝑒Γ [Δ] [𝐿]⟩ ↓𝛿 ⟨𝑆1 | 𝑣⟩ there exists a trace
⟨𝑆 ′0 [Δ] [𝐿] | 𝑒Γ [Δ] [𝐿]⟩ ↓𝛿

′ ⟨𝑆 ′1 | 𝑣⟩ such that ct(𝛿) = ct(𝛿 ′) and 𝑆1 (dom(𝐻)) = 𝑆 ′1 (dom(𝐻)).
The speculative version is defined similarly and can be found in Appendix B.1. Our compiler

correctness properties are then that the compiler guarantees (speculative) (concurrent) robust
constant under the assumption that the library is (speculatively) classically constant time.6

A formal model of RoboCop. Formally, we represent RoboCop as a parameterized compiler C
which transforms source libraries (Γ ⊨ 𝐿) into protected targets 𝐿. We have four compilers: (1) Cro,
which protects libraries from read-only attackers, (2) Cspec which protects against speculative
attackers, and (3) Cro-co, and (4) Cspec-co which also protect against concurrent observers. Cro

transforms all internal uses of new𝑝 𝑒 into newprotected 𝑒 , and wraps each external API function with
protectprotected and protectpublic. Cspec is the same as Cro but also inserts a fence before returns.
The concurrent compilers additionally reallocate all external buffers used by the library within
protected memory, and insert memory copying to and from the external and protected buffers.

To capture that the application manages the secret buffers and must allocate them in protected
memory we slightly modify the initial state well-formedness judgment to capture that each secret
block in Δ is allocated in the protected memory region. We additionally assume that applications
and libraries do not contain any protect𝑝 expressions prior to being run through our compiler. We
prove that each compiler is secure and guarantees its corresponding robust constant time property.
The theorem statement that Cro guarantees read-only robust constant time is shown below (the
remaining theorems are in Appendix D):

Theorem 1 (Cro guarantees read-only robust constant time). If Γ ⊨ 𝐿 is classically constant
time and does not contain any protect𝑝 subterms, then Cro (Γ ⊨ 𝐿) is robustly constant time for
read-only attackers (that do not contain protect𝑝).

Proof sketches. To prove Theorem 1 we must show that, for any read-only attackers and any
two initial states that vary only in the values of secrets, when we plug our compiled library into
6This property can be equivalently viewed as preservation of robust constant time from our source language of classical
“applications” to the target language containing the contexts of our attacker model.

1:16 M. Kolosick, B. Shivakumar, S. Cauligi, M. Patrignani, M. Vassena, R. Jhala, D. Stefan

the application the execution under both states does not vary (up to the observable leakage).
The difficulty arises in two places: firstly, we must reason about a (mostly) arbitrary application.
Secondly, the inherent nondeterminism of our semantics (due to allocation and out of bounds
memory semantics), means that we are dealing with sets of traces rather than just a single trace.

To handle these challenges we rely on the fact that our attacker model is defined as properties on
the structured traces 𝑇 . Our proof begins with the two initial states 𝑆 and 𝑆 ′ with the same whole
program 𝑒 and some trace 𝑇 for ⟨𝑆 | 𝑒⟩. We must then show that there is a corresponding trace for
⟨𝑆 ′ | 𝑒⟩. To do so we inductively split the read-only trace𝑇 into its attacker and library subsequences
and define a semantic interpretation that captures that there is a corresponding trace𝑇 ′ for ⟨𝑆 ′ | 𝑒⟩.
The interpretation enforces the following invariant during application subtraces: (1) the access
level in both states is public, (2) all memory that varies between the two states (contains secrets)
is within protected memory, and (3) the same memory locations have been allocated in both states.
These conditions and our assumption that our application is read-only allow us to prove that, for
all of the application subsequences 𝐴 of 𝑇 , there is a 𝑇 ′ that contains the exact same subsequences
𝐴. The first two conditions ensure that the memory that the application can access (even if it reads
out of bounds) does not contain secrets and is therefore identical, and the third condition aligns the
non-determinism between the two traces. For each non-deterministic choice in one application
subtrace we can then always show that we can make the exact same non-deterministic choice in
our other trace. Our interpretation of library subtraces requires that there exists a corresponding
library trace with the same observable events, which follows from assuming the library is classically
constant time. Put together these let us prove Theorem 1 (details are in Appendix D.1).
Our proof of the corresponding theorem for Cspec uses a similar technique of semantically

interpreting traces as relations between the two states. Here we instead split the speculative traces
into subsequences of non-speculative events (which correspond to an underlying non-speculative
trace 𝑇), mispeculated events (where the speculation was rolled back), and “correctly speculated”
events (where the speculative guess was eventually committed). We then show that the non-
speculative and “correctly” speculated events are related to an underlying non-speculative trace
and thus constant time by the proof of Theorem 1. To show the latter, we rely on the inserted fence
instruction ensuring that we cannot speculatively return into the application. For mispeculated
events we rely on the invariant that the application cannot change the protection level and a lemma
that speculative execution cannot read protected memory unless the access level was changed
non-speculatively (details are in Appendix D.2). This proof relies on a slightly stronger assumption
than its non-speculative counterpart: namely that the library is classically speculative constant
time under an extended function context. That is, adding new, unused functions should not break
the classical speculatively constant time protections. To illustrate where this might fail, consider
protections that rely on Intel’s hardware Indirect Branch Tracking for Spectre BTB protections.
This hardware feature adds an ENDBRANCH instruction labeling the set of legal jump targets. If a
protected library was linked with an application containing ENDBRANCH instructions, the classical
SCT protections might no longer hold. The assumption that classical SCT holds under an extended
context is thus akin to the assumption that the application does not contain protect𝑝 subterms.
The corresponding proofs for concurrent observers strengthen the invariant to capture that

unprotected buffers never contain secrets, even during library subtraces. Beyond this the proofs
follow the same (non-)speculative reasoning as for Cro and Cspec.

6 Evaluation

To evaluate the cost of guaranteeing robust constant time we ask the following questions:

Q1: What is the overhead of robust constant time against read-only/speculative attackers? (§6.1)

Robust Constant-Time Cryptography 1:17

Q2: What is the overhead of robust constant time against concurrent observers? (§6.2)

Benchmarks. To study the performance of RoboCop on a wide range of cryptographic code we
modify the SUPERCOP [56] cryptographic benchmarking tool. SUPERCOP’s benchmarking suite
is broken down into operations: we focus on its collections of implementations of authenticated
encryption (aead), Diffie-Hellman key exchange (dh), public key encryption (encrypt), key encap-
sulation mechanism (kem), public key signatures (sign), and stream cipher (stream) algorithms.
Within each of these operations SUPERCOP collects multiple implementations of each algorithm:
e.g. the stream data set contains several implementations of both Salsa20 and ChaCha20.

The design intent of SUPERCOP is to find the fastest each cryptographic algorithm can run on a
given machine. To this end its benchmarking tries every implementation of an algorithm with each
compiler (in our case Clang with the -O3, -O2, -Os, and -O flags). These implementations are bench-
marked multiple times across a range of input data sizes. Due to the nature of our implementation
of RoboCop we restrict one of these axes by removing all non-C/C++ implementations.
With its broad suite of algorithms and its find-the-fastest methodology, SUPERCOP is a more

robust means of benchmarking cryptographic software security techniques and we encourage
future designers to use it for benchmarking. We found its selecting from multiple compilation levels
particularly beneficial as, due to the cascading effects of optimizations, comparing at the same
optimization level is not truly a head-to-head comparison. Indeed we found that sometimes the
fastest optimization level would differ between RoboCop and the baseline, with several instances
of -O3 producing significantly slower code in combination with the protections than -O.
Machine and software setup.We run all benchmarks on a 13th Gen Intel® Core™ i9-13900KS,
with 125GB RAM, and running Linux kernel version 6.3.0. We run SUPERCOP configured to collect
data only on cores with the same frequency and our data is collected from 5.6 GHz cores. RoboCop
adds new passes to LLVM 16.0.2 and is split into two passes: the library pass adds the protections
and the application pass allocates a stack in protected memory on program entry. SUPERCOP
defines API functions for each operation: these are annotated as the external API for RoboCop.
We manually label secret key buffers and insert protected allocations for them in the protected
versions. For the concurrent protection benchmarks we label the ciphertext arguments on the dh
and stream APIs as being used for internal computation. The speculative protections differ from
the read-only protections solely in the insertion of a single fence before returning from the library.
We use a modified version of jemalloc 5.2.0 [28] patched to provide MPK allocation functions. Our
baseline replaces the libc malloc implementation with an unpatched version of jemalloc.
Summary of results. We find that robust constant time protections can generally be guaranteed
with minimal overhead (less than 5% in almost all cases for both read-only and speculative pro-
tections), with a small number of outliers with a peak of 40% overhead. At small data sizes highly
optimized stream ciphers also carry a large overhead (with a median around 33% for read-only
and 37% for speculative protections), however these workloads take on the order of a few hundred
cycles. We also find that concurrent protections add additional overhead but the resulting costs
remain minimal (the majority have overheads under 6%).

6.1 Read-only and speculative attackers

We measure the cost of ensuring robust constant time against read-only and speculative attackers
across six data sets (shown in Table 1 and Figure 9). For the largest data size for each benchmark we
find that the median overhead across all benchmarked algorithms is below 1% for both read-only
and speculative protections and that 75% of all implementations for each primitive have overheads
under 2% for read-only protections and 4% for speculative protections. For algorithms with varying
input lengths, SUPERCOP measures performance across a wide range of lengths. We show the

1:18 M. Kolosick, B. Shivakumar, S. Cauligi, M. Patrignani, M. Vassena, R. Jhala, D. Stefan

read-only speculative
Benchmark N Size 𝑄1 Median overhead 𝑄3 𝑄1 Median overhead 𝑄3
aead 385 2048 -0.26% 0.16% 0.65% -0.15% 0.15% 0.71%
dh 9 fixed -0.11% 0.32% 0.56% 0.36% 0.46% 1.50%
encrypt 15 4237 -0.57% -0.09% 0.41% -3.61% 0.48% 3.38%
kem 47 fixed -0.59% 0.04% 0.55% -0.82% 0.00% 0.49%
sign 40 4237 -1.00% -0.11% 0.67% -1.00% -0.22% 0.97%
stream 11 4096 0.24% 0.88% 1.45% 0.51% 0.92% 1.90%

Table 1. Overheads for read-only and speculative protections vs. unprotected baseline. N is the number of

algorithms in the dataset, Size is the size of the operation’s input in bytes, 𝑄1 and 𝑄3 are the first and third

quartile overheads, and the median overhead is of the overheads of the mean runtimes.

a
e
a
d

a
e
a
d
*

d
h

d
h
*

e
n
c
r
y
p
t

e
n
c
r
y
p
t
*

k
e
m

k
e
m
*

s
ig
n

s
ig
n
*

s
t
r
e
a
m

s
t
r
e
a
m
*

−5.0%

0.0%

5.0%

10.0%

read-only speculative*

Fig. 9. Box plot of overheads for read-only and speculative protections* compared to unprotected baseline.

Cutoff at 10% overhead, outliers beyond this point are discussed directly.
7

read-only speculative
Size 𝑄1 Median overhead 𝑄3 𝑄1 Median overhead 𝑄3 Baseline cycles
1 29.07% 33.40% 55.56% 27.63% 37.49% 55.43% 4.29e+02
128 15.08% 21.66% 24.78% 15.63% 21.25% 25.35% 7.69e+02
256 8.23% 12.01% 17.52% 9.50% 13.48% 15.79% 1.44e+03
512 5.04% 6.71% 9.88% 5.03% 6.80% 8.81% 2.11e+03
1024 3.39% 5.27% 7.28% 3.48% 4.94% 6.60% 4.11e+03
2048 1.54% 2.03% 2.73% 1.60% 2.45% 3.82% 7.72e+03
4096 0.24% 0.88% 1.45% 0.51% 0.92% 1.90% 1.54e+04

Table 2. Read-only and speculative protection overheads for stream ciphers with varying plaintext sizes.

Baseline cycles is the mean number of cycles for the unprotected baseline.

varying overheads across these sizes for stream ciphers in Table 2. The overhead increases as
data sizes get smaller, with a median overhead of 33% for encrypting a single byte with read-only
protections and 37% for speculative protections. Fortunately, at this data size encryption only takes
a few hundred cycles so this high relative overhead remains a minimal raw cost.
Outliers. For 75% of implementations, read-only protections have overheads below 2% and spec-
ulative protections below 4%, there are some outliers above 10%: one kem implementation has
a read-only overhead of 17% and a speculative overhead of 26%; two sign implementations have
read-only overheads of 15% and 16% and speculative overheads of 16% and 35%; and four aead im-
plementations have read-only overheads between 26% and 37% and speculative overheads between
28% and 42%. We do not have explanations for these higher overheads, however we observe that

7For clarity: 21/385 read-only and 23/385 speculative aead implementations lie above the whiskers and below the cutoff.

Robust Constant-Time Cryptography 1:19

non-concurrent concurrent
Base protections 𝑄1 Median overhead 𝑄3 𝑄1 Median overhead 𝑄3
read-only -0.11% 0.32% 0.56% 0.24% 0.74% 1.26%
speculative 0.36% 0.46% 1.50% 0.10% 0.69% 1.07%

(a) Diffie-Hellman key exchange (dh) algorithms

non-concurrent concurrent
Base protections Size 𝑄1 Median overhead 𝑄3 𝑄1 Median overhead 𝑄3
read-only 4096 0.24% 0.88% 1.45% 1.77% 2.39% 5.67%
speculative 4096 0.51% 0.92% 1.90% 1.61% 2.14% 2.60%

(b) Stream (stream) ciphers

Table 3. Overhead of read-only and speculative protections vs. overhead with concurrent protections.

they call OpenSSL’s cryptographic implementations and use internal randomness and dynamic allo-
cation, though they are not the only algorithms that do so. We hypothesize the observed speedups
are due to (1) noise as the baseline number of cycles is often small and (2) the separate protected
allocator. We’ve previously observed better locality properties with separate library allocators.

6.2 Concurrent attackers

To protect against concurrent attackers it is necessary for buffers containing intermediate values de-
rived from secrets to remain within the MPK protected memory. In its read-only attacker protections
mode RoboCop ensures all memory originating from cryptographic code meets this requirement,
however some cryptographic implementations use external, public buffers as internal, intermediate
(private) buffers. To measure the cost of protecting these intermediate buffers we benchmark the
dh and stream data sets with RoboCop’s concurrent protections mode. We annotate the top-level
SUPERCOP API functions crypto_dh and crypto_stream to mark the ciphertext argument as being
used for intermediate computation. In the case of stream the size of this buffer is dynamically
determined so wemark the plaintext length argument as the size for allocating a secure intermediate
buffer. Table 3 shows the median overheads for the read-only protections compared to the median
overheads for the concurrent protections. For our dh data set protecting these intermediate buffers
increases the median overhead from 0.32% to 0.74% for read-only attackers and from 0.46% to
0.69% for speculative attackers. For our stream cipher data set at the largest data size the increase
is greater, with the median increasing from 0.88% to 2.39% for read-only attacker and 0.92% to
2.14% for speculative attackers. We hypothesize that the higher overhead for stream ciphers is
due to the dynamic allocation whereas the statically sized buffer of the Diffie-Hellman API allows
optimizations in both allocation and copying back to the external buffer.
Our benchmarking treats every algorithm within each data set as if they use public buffers for

intermediate computations. In practice RoboCop lets library designers label specifically which/if
buffers are used for intermediate computations. This ensures that code that does not use the external
buffers never has to pay the price for the extra allocation and copying and that the same library
code base can be used in all contexts: in single-threaded mode RoboCop can omit the allocation
and copy but in concurrent mode it handles the creation of a protected intermediate buffer.

7 Limitations

Our implementation of RoboCop has a few limitations: (1) While RoboCop handles observers in
concurrent threads it does not handle running concurrent cryptographic library code. To handle
this we could allocate a single protected stack per thread. It would be safe to reuse a single MPK
protection key across all threads as concurrent threads would only have access while running

1:20 M. Kolosick, B. Shivakumar, S. Cauligi, M. Patrignani, M. Vassena, R. Jhala, D. Stefan

cryptographic library code. (2) RoboCop assumes that no other code is using MPK. (3) RoboCop
does not handle ensuring that protected memory does not get dumped on crashes, written to disk,
or that it is cleared at the end of execution. These could be handled in one place by operating
on MPK protected pages. (4) RoboCop assumes the speculative behavior of MPK follows Intel’s
specification and wrpkru will never execute speculatively and protected memory will never be
accessed speculatively until protections have been fully committed [27]. Hardware bugs such as
meltdown-pk [13] violate these assumptions, and we rely on hardware fixes for such bugs (for
instance official patches have already been provided for the machine used for our evaluation).

8 Related Work

Memory isolation.MPK has been used to provide in-process memory isolation [26, 55], including
between safe and unsafe Rust code [24, 30, 46]. MPK protections can be modified by unprivileged
instructions, as such RoboCop assumes that applications do not have access to these instructions
and including through control-flow hijacks. Countermeasures like binary rewriting [55], system
call filtering [49, 58], and Cfi schemes [11, 12] could be used to lift these assumptions.
Similar to RoboCop, CryptoMPK [28] leverages MPK to protect the confidentiality of secret

cryptographic data from memory disclosure vulnerabilities. We believe that it can guarantee
robust constant time against read-only attackers, though their work is not framed in this manner.
CryptoMPK differs from RoboCop in several fundamental ways: First, it is instead a whole-program
analysis and transformation, identifying “crypto buffers” throughout the program and toggling MPK
protection around use sites. As such it inserts significantly more context switches than RoboCop,
and dynamically allocates and frees secret stack buffers. RoboCop’s trusted library model avoids
these costs, allowing a single context switch on library entry and exit, completely avoiding the
need to dynamically allocate stack buffers and leading to significant performance gains. Second, by
avoiding a whole program analysis RoboCop’s model allows a much simpler implementation. This
allows RoboCop to be applied to more complicated code and even hard to analyze assembly code
(though we have not implemented this). Lastly, CryptoMPK does not handle robust speculative
protections nor robust protections against concurrent attackers. As an optimization, CryptoMPK
chooses not to securely allocate small secret stack buffers and instead inserts zeroing code. This
zeroing code has the same trade offs between protecting against Spectre and performance as in
LibSodium, and the buffers are also visible to concurrent attackers. CryptoMPK provides a mxor

annotation to ensure that eventually declassified buffers are not marked as tainted when they are
mixed with secret key data. This has the result of exposing these buffers to concurrent attackers.
Secure zeroization is often deployed as a manual protection in cryptographic libraries. Unfor-

tunately, implementing secure memory zeroing in a high-level language is essentially impossi-
ble [44, 47, 61]. Recent work [40] shows how to develop a compiler pass to implement secure
zeroization. RoboCop avoids these issues by restricting all secret data to a protected memory
region, thus avoiding the need for zeroization (apart from register zeroing).

(Speculative) constant time.Many domain-specific languages and compilers have been developed
to produce high-assurance cryptographic code [4, 7, 16, 45, 59]. Spectre attacks [31] significantly
reduced the guarantees of these tools and prompted defenses against speculative leaks [15]. Jasmin
implements Selective Speculative Load Hardening to protect against Spectre-PHT [51], performing
stack zeroization and register clearing [40]. Blade inserts a minimum number of protections to
prevent leaks via Spectre-PHT gadgets [57]. Swivel hardens WebAssembly sandboxes against spec-
ulative sandbox breakout and sandbox poisoning attacks [39, 62]. Serberus mitigates all currently
known Spectre variants in code that follows the static constant-time discipline, which additionally
prohibits secret function arguments and return values [38]. These tools serve as complements to

Robust Constant-Time Cryptography 1:21

RoboCop: in combination they can be used to guarantee end-to-end protections against speculative
attackers as discussed in §4.2. Notably, there is an exception to this statement in the case of Serberus:
In handling Spectre-RSB [32], Serberus makes an implicit assumption that the return stack buffer
is empty when entering cryptographic code. Much like the issues with prior work on constant time
protections, Serberus is assuming that the cryptographic code represents the entire program. This
can be remedied by RSB filling on entry to cryptographic code.

Foundations for cryptographic software security. Researchers have developed trace-based
leakage models to reason about timing leaks in cryptographic code [8, 37]. These models have
then been extended with prediction oracles [23], speculative semantics and directives [14, 17, 22]
to capture leaks via (combinations of) different Spectre gadgets [19]. Our formal approach builds
on these well-established practices. Our notion of RCT is inspired by previous work on secure
compilers [3], which are formally defined as compilers that preserve classes of (hyper)-properties
in adversarial contexts. Patrignani and Guarnieri [43] develop secure robust compilation criteria
to formally examine the security guarantees of protections inserted by major compilers against
Spectre-PHT, our approach to a secure compiler property follows this line of work.

References

[1] 2018. Control-flow Enforcement Technology Specification. Technical Report. https://software.intel.com/sites/default/
files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf

[2] Martín Abadi. 1999. Secrecy by Typing in Security Protocols. J. ACM 46, 5 (Sept. 1999), 749–786. https://doi.org/10.
1145/324133.324266

[3] Carmine Abate, Roberto Blanco, Deepak Garg, Catalin Hritcu, Marco Patrignani, and Jeremy Thibault. 2019. Journey
Beyond Full Abstraction: Exploring Robust Property Preservation for Secure Compilation. In 2019 IEEE 32nd Computer
Security Foundations Symposium (CSF) (Hoboken, NJ, USA, 2019-06). IEEE, 256–25615. https://doi.org/10.1109/CSF.
2019.00025

[4] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin Grégoire, Vincent Laporte, Tiago Oliveira,
Hugo Pacheco, Benedikt Schmidt, and Pierre-Yves Strub. 2017. Jasmin: High-Assurance and High-Speed Cryptography.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (Dallas, Texas, USA) (CCS
’17). Association for Computing Machinery, New York, NY, USA, 1807–1823. https://doi.org/10.1145/3133956.3134078

[5] OpenSSL Project Authors. [n. d.]. OpenSSL. OpenSSL Project. https://www.openssl.org/
[6] Manuel Barbosa, Gilles Barthe, Karthik Bhargavan, Bruno Blanchet, Cas Cremers, Kevin Liao, and Bryan Parno. 2021.

SoK: Computer-Aided Cryptography. In 2021 IEEE Symposium on Security and Privacy (SP) (2021-05). IEEE, 777–795.
https://doi.org/10.1109/SP40001.2021.00008 ISSN: 2375-1207.

[7] Gilles Barthe, Sandrine Blazy, Benjamin Grégoire, Rémi Hutin, Vincent Laporte, David Pichardie, and Alix Trieu. 2019.
Formal Verification of a Constant-Time Preserving C Compiler. Proc. ACM Program. Lang. 4, POPL, Article 7 (dec
2019), 30 pages. https://doi.org/10.1145/3371075

[8] Gilles Barthe, Benjamin Grégoire, and Vincent Laporte. 2018. Secure Compilation of Side-Channel Countermeasures:
The Case of Cryptographic “Constant-Time”. In 2018 IEEE 31st Computer Security Foundations Symposium (CSF)
(2018-07). IEEE, 328–343. https://doi.org/10.1109/CSF.2018.00031 ISSN: 2374-8303.

[9] Daniel J. Bernstein. 2005. Cache-timing attacks on AES. Technical Report. The University of Illinois at Chicago.
https://api.semanticscholar.org/CorpusID:2217245

[10] Daniel J. Bernstein. 2008. The Salsa20 Family of Stream Ciphers. In New Stream Cipher Designs: The eSTREAM Finalists
(Berlin, Heidelberg) (Lecture Notes in Computer Science), Matthew Robshaw and Olivier Billet (Eds.). Springer, 84–97.
https://doi.org/10.1007/978-3-540-68351-3_8

[11] Nathan Burow, Scott A. Carr, Joseph Nash, Per Larsen, Michael Franz, Stefan Brunthaler, and Mathias Payer. 2017.
Control-Flow Integrity: Precision, Security, and Performance. Comput. Surveys 50 (April 2017), 16:1–16:33. https:
//doi.org/10.1145/3054924

[12] Nathan Burow, Xinping Zhang, and Mathias Payer. [n. d.]. SoK: Shining Light on Shadow Stacks. In 2019 IEEE
Symposium on Security and Privacy (SP) (2019-05). IEEE, 985–999. https://doi.org/10.1109/SP.2019.00076 ISSN:
2375-1207.

[13] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von Berg, Philipp Ortner, Frank Piessens,
Dmitry Evtyushkin, and Daniel Gruss. [n. d.]. A Systematic Evaluation of Transient Execution Attacks and Defenses.
249–266. https://www.usenix.org/conference/usenixsecurity19/presentation/canella

https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://doi.org/10.1145/324133.324266
https://doi.org/10.1145/324133.324266
https://doi.org/10.1109/CSF.2019.00025
https://doi.org/10.1109/CSF.2019.00025
https://doi.org/10.1145/3133956.3134078
https://www.openssl.org/
https://doi.org/10.1109/SP40001.2021.00008
https://doi.org/10.1145/3371075
https://doi.org/10.1109/CSF.2018.00031
https://api.semanticscholar.org/CorpusID:2217245
https://doi.org/10.1007/978-3-540-68351-3_8
https://doi.org/10.1145/3054924
https://doi.org/10.1145/3054924
https://doi.org/10.1109/SP.2019.00076
https://www.usenix.org/conference/usenixsecurity19/presentation/canella

1:22 M. Kolosick, B. Shivakumar, S. Cauligi, M. Patrignani, M. Vassena, R. Jhala, D. Stefan

[14] Sunjay Cauligi, Craig Disselkoen, Klaus v. Gleissenthall, Dean Tullsen, Deian Stefan, Tamara Rezk, and Gilles Barthe.
[n. d.]. Constant-time foundations for the new spectre era. In Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation (New York, NY, USA, 2020-06-11) (PLDI 2020). Association for
Computing Machinery, 913–926. https://doi.org/10.1145/3385412.3385970

[15] Sunjay Cauligi, Craig Disselkoen, Daniel Moghimi, Gilles Barthe, and Deian Stefan. 2022. SoK: Practical Foundations
for Software Spectre Defenses. In 2022 IEEE Symposium on Security and Privacy (SP) (2022-05). IEEE, 666–680. https:
//doi.org/10.1109/SP46214.2022.9833707 ISSN: 2375-1207.

[16] Sunjay Cauligi, Gary Soeller, Brian Johannesmeyer, Fraser Brown, Riad S. Wahby, John Renner, Benjamin Gregoire,
Gilles Barthe, Ranjit Jhala, and Deian Stefan. 2019. FaCT: A DSL for timing-sensitive computation. In Programming
Language Design and Implementation (PLDI). ACM SIGPLAN.

[17] Kevin Cheang, Cameron Rasmussen, Sanjit Seshia, and Pramod Subramanyan. 2019. A Formal Approach to Secure
Speculation. In 2019 IEEE 32nd Computer Security Foundations Symposium (CSF). IEEE, 288–28815. https://doi.org/10.
1109/CSF.2019.00027

[18] Frank Denis. [n. d.]. libsodium. libsodium. https://doc.libsodium.org/
[19] Xaver Fabian, Marco Guarnieri, and Marco Patrignani. 2022. Automatic Detection of Speculative Execution

Combinations. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security
(Los Angeles, CA, USA) (CCS ’22). Association for Computing Machinery, New York, NY, USA, 965–978. https:
//doi.org/10.1145/3548606.3560555

[20] Cédric Fournet, Andrew D. Gordon, and Sergio Maffeis. 2007. A Type Discipline for Authorization Policies. ACM
Trans. Program. Lang. Syst. 29, 5, Article 25 (Aug. 2007). https://doi.org/10.1145/1275497.1275500

[21] Andrew D. Gordon and Alan Jeffrey. 2003. Authenticity by Typing for Security Protocols. J. Comput. Secur. 11, 4 (July
2003), 451–519. http://dl.acm.org/citation.cfm?id=959088.959090

[22] Marco Guarnieri, Boris Köpf, Jan Reineke, and Pepe Vila. 2021. Hardware-Software Contracts for Secure Speculation.
In 42nd IEEE Symposium on Security and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021. IEEE, 1868–1883.
https://doi.org/10.1109/SP40001.2021.00036

[23] Marco Guarnieri, Boris Köpf, José F. Morales, Jan Reineke, and Andrés Sánchez. 2020. Spectector: Principled Detection
of Speculative Information Flows. In 2020 IEEE Symposium on Security and Privacy (SP) (2020-05). IEEE, 1–19. https:
//doi.org/10.1109/SP40000.2020.00011 ISSN: 2375-1207.

[24] Merve Gülmez, Thomas Nyman, Christoph Baumann, and Jan Tobias Mühlberg. 2023. Friend or Foe Inside? Exploring
In-Process Isolation to Maintain Memory Safety for Unsafe Rust. arXiv preprint arXiv:2306.08127 (2023).

[25] Enes Göktas, Kaveh Razavi, Georgios Portokalidis, Herbert Bos, and Cristiano Giuffrida. 2020. Speculative Probing:
Hacking Blind in the Spectre Era. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security (New York, NY, USA, 2020-11-02) (CCS ’20). Association for Computing Machinery, 1871–1885. https:
//doi.org/10.1145/3372297.3417289

[26] Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John Criswell, Michael L Scott, Kai Shen, and Mike Marty.
2019. Hodor: Intra-process isolation for high-throughput data plane libraries. In 2019 USENIX Annual Technical
Conference, USENIX ATC 2019, Renton, WA, USA, July 10-12, 2019. USENIX Association.

[27] Intel 2020. Intel® 64 and IA-32 Architectures Software Developer’s Manual.
[28] Xuancheng Jin, Xuangan Xiao, Songlin Jia, Wang Gao, Dawu Gu, Hang Zhang, Siqi Ma, Zhiyun Qian, and Juanru

Li. 2022. Annotating, tracking, and protecting cryptographic secrets with CryptoMPK. In 2022 IEEE Symposium on
Security and Privacy (SP). IEEE, IEEE, 650–665.

[29] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2017. RustBelt: securing the foundations of
the rust programming language. 2 (2017), 1–34. Issue POPL. https://doi.org/10.1145/3158154

[30] Paul Kirth, Mitchel Dickerson, Stephen Crane, Per Larsen, Adrian Dabrowski, David Gens, Yeoul Na, Stijn Volckaert,
and Michael Franz. 2022. PKRU-safe: automatically locking down the heap between safe and unsafe languages. In
Proceedings of the Seventeenth European Conference on Computer Systems. 132–148.

[31] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan
Mangard, Thomas Prescher,Michael Schwarz, and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execution.
In 2019 IEEE Symposium on Security and Privacy (SP) (2019-05). IEEE, 1–19. https://doi.org/10.1109/SP.2019.00002
ISSN: 2375-1207.

[32] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu Song, and Nael Abu-Ghazaleh. 2018. Spectre Returns!
Speculation Attacks using the Return Stack Buffer. https://www.usenix.org/conference/woot18/presentation/koruyeh

[33] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for Lifelong Program Analysis and Transfor-
mation. In CGO. San Jose, CA, USA, 75–88.

[34] Xavier Leroy. 2009. A Formally Verified Compiler Back-end. 43, 4 (2009), 363–446. https://doi.org/10.1007/s10817-
009-9155-4

https://doi.org/10.1145/3385412.3385970
https://doi.org/10.1109/SP46214.2022.9833707
https://doi.org/10.1109/SP46214.2022.9833707
https://doi.org/10.1109/CSF.2019.00027
https://doi.org/10.1109/CSF.2019.00027
https://doc.libsodium.org/
https://doi.org/10.1145/3548606.3560555
https://doi.org/10.1145/3548606.3560555
https://doi.org/10.1145/1275497.1275500
http://dl.acm.org/citation.cfm?id=959088.959090
https://doi.org/10.1109/SP40001.2021.00036
https://doi.org/10.1109/SP40000.2020.00011
https://doi.org/10.1109/SP40000.2020.00011
https://doi.org/10.1145/3372297.3417289
https://doi.org/10.1145/3372297.3417289
https://doi.org/10.1145/3158154
https://doi.org/10.1109/SP.2019.00002
https://www.usenix.org/conference/woot18/presentation/koruyeh
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1007/s10817-009-9155-4

Robust Constant-Time Cryptography 1:23

[35] Giorgi Maisuradze and Christian Rossow. 2018. ret2spec: Speculative Execution Using Return Stack Buffers. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security (New York, NY, USA,
2018-10-15) (CCS ’18). Association for Computing Machinery, 2109–2122. https://doi.org/10.1145/3243734.3243761

[36] Andrea Mambretti, Alexandra Sandulescu, Alessandro Sorniotti, William Robertson, Engin Kirda, and Anil Kurmus.
2021. Bypassingmemory safetymechanisms through speculative control flow hijacks. In 2021 IEEE European Symposium
on Security and Privacy (EuroS&P) (2021-09). IEEE, 633–649. https://doi.org/10.1109/EuroSP51992.2021.00048

[37] David Molnar, Matt Piotrowski, David Schultz, and David Wagner. 2005. The Program Counter Security Model:
Automatic Detection and Removal of Control-Flow Side Channel Attacks. USENIX Association, Baltimore, MD.

[38] Nicholas Mosier, Hamed Nemati, John C. Mitchell, and Caroline Trippel. 2023. Serberus: Protecting Cryptographic Code
from Spectres at Compile-Time. ArXiv abs/2309.05174 (2023). https://api.semanticscholar.org/CorpusID:261682113

[39] Shravan Narayan, Craig Disselkoen, Daniel Moghimi, Sunjay Cauligi, Evan Johnson, Zhao Gang, Anjo Vahldiek-
Oberwagner, Ravi Sahita, Hovav Shacham, Dean Tullsen, and Deian Stefan. 2021. Swivel: Hardening WebAssembly
against Spectre. In 30th USENIX Security Symposium (USENIX Security 21). USENIX Association, 1433–1450. https:
//www.usenix.org/conference/usenixsecurity21/presentation/narayan

[40] Santiago Arranz Olmos, Gilles Barthe, Ruben Gonzalez, Benjamin Grégoire, Vincent Laporte, Jean-Christophe Lechenet,
Tiago Oliveira, and Peter Schwabe. 2023. High-assurance zeroization. Cryptology ePrint Archive, Paper 2023/1713.
https://eprint.iacr.org/2023/1713 https://eprint.iacr.org/2023/1713.

[41] Marco Patrignani, Amal Ahmed, and Dave Clarke. 2019. Formal Approaches to Secure Compilation: A Survey of
Fully Abstract Compilation and Related Work. ACM Comput. Surv. 51, 6, Article 125 (feb 2019), 36 pages. https:
//doi.org/10.1145/3280984

[42] Marco Patrignani and Sam Blackshear. 2023. Robust Safety for Move. In 2023 IEEE 36th Computer Security Foundations
Symposium (CSF). IEEE Computer Society, Los Alamitos, CA, USA, 308–323. https://doi.org/10.1109/CSF57540.2023.
00045

[43] Marco Patrignani and Marco Guarnieri. 2021. Exorcising Spectres with Secure Compilers. In Proceedings of the
2021 ACM SIGSAC Conference on Computer Communications Security (Virtual Event, Republic of Korea) (CCS ’21).
Association for Computing Machinery, New York, NY, USA, 445–461. https://doi.org/10.1145/3460120.3484534

[44] Colin Percival. 2014. Zeroing buffers is insufficient. https://www.daemonology.net/blog/2014-09-06-zeroing-buffers-is-
insufficient.html

[45] Jonathan Protzenko, Jean-Karim Zinzindohoué, Aseem Rastogi, Tahina Ramananandro, Peng Wang, Santiago Zanella-
Béguelin, Antoine Delignat-Lavaud, Cătălin Hriţcu, Karthikeyan Bhargavan, Cédric Fournet, and Nikhil Swamy. 2017.
Verified Low-Level Programming Embedded in F*. Proc. ACM Program. Lang. 1, ICFP, Article 17 (aug 2017), 29 pages.
https://doi.org/10.1145/3110261

[46] Elijah Rivera, Samuel Mergendahl, Howard Shrobe, Hamed Okhravi, and Nathan Burow. 2021. Keeping safe rust safe
with galeed. In Annual Computer Security Applications Conference. 824–836.

[47] RustCrypto. [n. d.]. Zeroize. RustCrypto. https://docs.rs/zeroize/1.7.0/zeroize/
[48] Michael Sammler, Deepak Garg, Derek Dreyer, and Tadeusz Litak. 2020. The high-level benefits of low-level sandboxing.

PACMPL 4, POPL (2020), 32:1–32:32. https://doi.org/10.1145/3371100
[49] David Schrammel, Samuel Weiser, Richard Sadek, and Stefan Mangard. 2022. Jenny: Securing Syscalls for {PKU-based}

Memory Isolation Systems. In 31st USENIX Security Symposium (USENIX Security 22). USENIX Association, 936–952.
[50] Basavesh Ammanaghatta Shivakumar, Jack Barnes, Gilles Barthe, Sunjay Cauligi, Chitchanok Chuengsatiansup,

Daniel Genkin, Sioli O’Connell, Peter Schwabe, Rui Qi Sim, and Yuval Yarom. 2023. Spectre Declassified: Reading
from the Right Place at the Wrong Time. In 2023 IEEE Symposium on Security and Privacy (SP) (2023-05). 1753–1770.
https://doi.org/10.1109/SP46215.2023.10179355 ISSN: 2375-1207.

[51] Basavesh Ammanaghatta Shivakumar, Jack Barnes, Gilles Barthe, Sunjay Cauligi, Chitchanok Chuengsatiansup, Daniel
Genkin, Sioli O’Connell, Peter Schwabe, Rui Qi Sim, and Yuval Yarom. 2023. Spectre declassified: Reading from the
right place at the wrong time. In 2023 IEEE Symposium on Security and Privacy (SP). IEEE, 1753–1770.

[52] David Swasey, Deepak Garg, and Derek Dreyer. 2017. Robust and Compositional Verification of Object Capability
Patterns. In Proceedings of the 2017 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2017. October 22 - 27, 2017.

[53] The LLVM Foundation. 2021. Control Flow Integrity, Clang 12 documentation. https://clang.llvm.org/docs/
ControlFlowIntegrity.html

[54] Reini Urban. [n. d.]. libsodium_memzero with memory barrier · Issue #802 · jedisct1/libsodium. https://github.com/
jedisct1/libsodium/issues/802

[55] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O Duarte, Michael Sammler, Peter Druschel, and Deepak Garg.
2019. ERIM: Secure, Efficient In-process Isolation with Protection Keys (MPK). In 28th USENIX Security Symposium
(USENIX Security 19). USENIX Association, 1221–1238.

https://doi.org/10.1145/3243734.3243761
https://doi.org/10.1109/EuroSP51992.2021.00048
https://api.semanticscholar.org/CorpusID:261682113
https://www.usenix.org/conference/usenixsecurity21/presentation/narayan
https://www.usenix.org/conference/usenixsecurity21/presentation/narayan
https://eprint.iacr.org/2023/1713
https://eprint.iacr.org/2023/1713
https://doi.org/10.1145/3280984
https://doi.org/10.1145/3280984
https://doi.org/10.1109/CSF57540.2023.00045
https://doi.org/10.1109/CSF57540.2023.00045
https://doi.org/10.1145/3460120.3484534
https://www.daemonology.net/blog/2014-09-06-zeroing-buffers-is-insufficient.html
https://www.daemonology.net/blog/2014-09-06-zeroing-buffers-is-insufficient.html
https://doi.org/10.1145/3110261
https://docs.rs/zeroize/1.7.0/zeroize/
https://doi.org/10.1145/3371100
https://doi.org/10.1109/SP46215.2023.10179355
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://github.com/jedisct1/libsodium/issues/802
https://github.com/jedisct1/libsodium/issues/802

1:24 M. Kolosick, B. Shivakumar, S. Cauligi, M. Patrignani, M. Vassena, R. Jhala, D. Stefan

[56] VAMPIRE. [n. d.]. SUPERCOP: System for Unified Performance Evaluation Related to Cryptographic Operations and
Primitives. https://bench.cr.yp.to/supercop.html

[57] Marco Vassena, Craig Disselkoen, Klaus von Gleissenthall, Sunjay Cauligi, Rami Gökhan Kıcı, Ranjit Jhala, Dean
Tullsen, and Deian Stefan. 2021. Automatically eliminating speculative leaks from cryptographic code with blade. 5
(2021), 49:1–49:30. Issue POPL. https://doi.org/10.1145/3434330

[58] Alexios Voulimeneas, Jonas Vinck, Ruben Mechelinck, and Stijn Volckaert. 2022. You shall not (by) pass! practical,
secure, and fast PKU-based sandboxing. In Proceedings of the Seventeenth European Conference on Computer Systems.
266–282.

[59] Conrad Watt, John Renner, Natalie Popescu, Sunjay Cauligi, and Deian Stefan. 2019. CT-Wasm: Type-Driven Secure
Cryptography for the Web Ecosystem. Proc. ACM Program. Lang. 3, POPL, Article 77 (jan 2019), 29 pages. https:
//doi.org/10.1145/3290390

[60] Johannes Wikner and Kaveh Razavi. 2022. RETBLEED: Arbitrary Speculative Code Execution with Return Instructions.
3825–3842. https://www.usenix.org/conference/usenixsecurity22/presentation/wikner

[61] Zhaomo Yang, Brian Johannesmeyer, Anders Trier Olesen, Sorin Lerner, and Kirill Levchenko. 2017. Dead Store
Elimination (Still) Considered Harmful. 1025–1040. https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/yang

[62] Hosein Yavarzadeh, Mohammadkazem Taram, Shravan Narayan, Deian Stefan, and Dean Tullsen. 2023. Half&Half:
Demystifying Intel’s Directional Branch Predictors for Fast, Secure Partitioned Execution. In IEEE Symposium on
Security and Privacy (S&P). IEEE.

https://bench.cr.yp.to/supercop.html
https://doi.org/10.1145/3434330
https://doi.org/10.1145/3290390
https://doi.org/10.1145/3290390
https://www.usenix.org/conference/usenixsecurity22/presentation/wikner
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/yang
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/yang

Robust Constant-Time Cryptography 1:25

A Language

⟨𝑆 | 𝐾 ℓ :: 𝑒ℓ⟩ 𝜖=⇒ ⟨𝑆 | 𝐾 ℓ :: 𝑒ℓ⟩

red-call

𝑆 (𝑧) = 𝜆ℓ𝑓 𝑥 .𝑒 𝜖 =

{
(call 𝑧)ℓ when ℓ𝑓 = ℓ
(call 𝑧)ℓ�ℓ𝑓 otherwise

⟨𝑆 | 𝐾 ′ℓ ′ :: 𝐾 [𝑧 (𝑣)]ℓ⟩ 𝜖=⇒ ⟨𝑆 | 𝐾 ′ℓ ′ :: 𝐾 ℓ :: 𝑒 [𝑣/𝑥]ℓ𝑓 ⟩

red-ret

𝜖 =

{
(ret 𝑣)ℓ when ℓ𝐾 = ℓ

(ret 𝑣)ℓ�ℓ𝐾 otherwise

⟨𝑆 | 𝐾 ′ℓ ′ :: 𝐾 ℓ𝐾 :: 𝑣 ℓ⟩ 𝜖=⇒ ⟨𝑆 | 𝐾 ′ℓ ′ :: 𝐾 [𝑣]ℓ𝐾 ⟩

red-𝛽

⟨𝑆 | 𝑒⟩ 𝛿−→ ⟨𝑆 ′ | 𝑒′⟩

⟨𝑆 | 𝐾 ′ℓ ′ :: 𝐾 [𝑒]ℓ⟩ 𝛿
ℓ

==⇒ ⟨𝑆 ′ | 𝐾 ′ℓ ′ :: 𝐾 [𝑒′]ℓ⟩

1:26 M. Kolosick, B. Shivakumar, S. Cauligi, M. Patrignani, M. Vassena, R. Jhala, D. Stefan

⟨𝑆 | 𝑒⟩ 𝛿−→ ⟨𝑆 | 𝑒⟩

𝛽-subst

⟨𝑆 | 𝑥{𝑣}⟩ 0−→ ⟨𝑆 | 𝑣⟩

𝛽-op
𝑣 ′ = 𝛿 (𝑜𝑝) (𝑣)

⟨𝑆 | op(𝑣)⟩ 0−→ ⟨𝑆 | 𝑣 ′⟩

𝛽-deref
accessible(𝑆, 𝑧𝑏)

𝑧𝑜 ∈ [𝑆 (𝑧𝑏).size)] 𝑣 = 𝑆 (𝑧𝑏).𝑣 (𝑧𝑜)

⟨𝑆 | ! (𝑧𝑏 [𝑧𝑜])⟩
readib 𝑣←[𝑧𝑏 [𝑧𝑜]−−−−−−−−−−−−→ ⟨𝑆 | 𝑣⟩

𝛽-deref-oob
𝑧𝑏 ∉ dom(𝑆) ∨ 𝑧𝑜 ∉ [𝑆 (𝑧𝑏).size] 𝑧′

𝑏
∈ dom(𝑆)

𝑧′𝑜 ∈ [𝑆 (𝑧′𝑏).size)] 𝑣 = 𝑆 (𝑧′
𝑏
).𝑣 (𝑧′𝑜) accessible(𝑆, 𝑧′

𝑏
)

⟨𝑆 | ! (𝑧𝑏 [𝑧𝑜])⟩
readoob 𝑣←[𝑧′

𝑏
[𝑧′𝑜]−−−−−−−−−−−−−→ ⟨𝑆 | 𝑣⟩

𝛽-write
accessible(𝑆, 𝑧𝑏)

𝑧𝑜 ∈ [𝑆 (𝑧𝑏).size] 𝑆 ′ = 𝑆 (𝑧𝑏).𝑣 [𝑧𝑜 := 𝑣]

⟨𝑆 | 𝑧𝑏 [𝑧𝑜] := 𝑣⟩
writeib 𝑣 ↦→𝑧𝑏 [𝑧𝑜]−−−−−−−−−−−−−→ ⟨𝑆 ′ | 0⟩

𝛽-write-oob
𝑧𝑏 ∉ dom(𝑆) ∨ 𝑧𝑜 ∉ [𝑆 (𝑧𝑏).size] 𝑧′

𝑏
∈ dom(𝑆)

𝑧′𝑜 ∈ [𝑆 (𝑧′𝑏).size)] 𝑆 ′ = 𝑆 (𝑧′
𝑏
).𝑣 [𝑧′𝑜 := 𝑣] accessible(𝑆, 𝑧′

𝑏
)

⟨𝑆 | 𝑧𝑏 [𝑧𝑜] := 𝑣⟩
writeoob 𝑣 ↦→𝑧′𝑏 [𝑧

′
𝑜]−−−−−−−−−−−−−−→ ⟨𝑆 ′ | 0⟩

𝛽-new
𝑧 > 0 𝑧𝑏 = fresh(𝑆) 𝑆.𝑝 ⊑ 𝑝
𝑆 ′ = 𝑆 [𝑧𝑏 := {size = 𝑧, 𝑣 = ⊥, 𝑝 = 𝑝}]

⟨𝑆 | new𝑝 𝑧⟩
new𝑝 𝑧@𝑧𝑏−−−−−−−−−→ ⟨𝑆 ′ | 𝑧𝑏 [0]⟩

𝛽-get-block

⟨𝑆 | get-block (𝑧𝑏 [𝑧𝑜])⟩
0−→ ⟨𝑆 | 𝑧𝑏⟩

𝛽-get-offset

⟨𝑆 | get-offset (𝑧𝑏 [𝑧𝑜])⟩
0−→ ⟨𝑆 | 𝑧𝑜⟩

𝛽-if-false

⟨𝑆 | if 0 then 𝑒 else 𝑒′⟩ branch 0−−−−−−→ ⟨𝑆 | 𝑒′⟩

𝛽-if-true
𝑣 ≠ 0

⟨𝑆 | if 𝑣 then 𝑒 else 𝑒′⟩ branch 𝑣−−−−−−→ ⟨𝑆 | 𝑒⟩

𝛽-protect

⟨𝑆 | protect𝑝⟩
protect𝑝−−−−−−→ ⟨𝑆 [𝑝 := 𝑝] | 0⟩

𝛽-seq

⟨𝑆 | 𝑣 ; 𝑒⟩ 0−→ ⟨𝑆 | 𝑒⟩

𝛽-fence

⟨𝑆 | fence⟩ fence−−−−→ ⟨𝑆 | 0⟩

Fig. 10. Non-speculative trace semantics

Robust Constant-Time Cryptography 1:27

𝑥 [𝑣/𝑥] ≜ 𝑥{𝑣}
𝑦 [𝑣/𝑥] ≜ 𝑦

(𝑥{𝑣 ′}) [𝑣/𝑥] ≜ 𝑥{𝑣 ′ [𝑣/𝑥]}
(𝑦{𝑣 ′}) [𝑣/𝑥] ≜ 𝑦{𝑣 ′ [𝑣/𝑥]}

· · ·

𝑝 ⊑ 𝑝 protected ⊑ public public @ protected

𝑆.𝑝 ⊑ 𝑆 (𝑧𝑏).𝑝
accessible(𝑆, 𝑧𝑏)

Fig. 11. Non-speculative semantics auxiliary definitions

The following definitions assume a fixed microarchitectural state type 𝐴, and a fixed speculation
oracle spec : 𝐴 × 𝑒 → 𝐴 × 𝑑 .

⟨Φ | 𝐾 :: 𝑒⟩↩𝛿−→→⟨Φ | 𝐾 :: 𝑒⟩
spec-nonspec
(𝑎′, nonspec) = spec(Φ.𝑎, 𝑒)
⟨Φ | 𝐾 :: 𝑒⟩ 𝛿

↩−→ ⟨Φ′ | 𝐾 ′ :: 𝑒′⟩

⟨Φ | 𝐾 :: 𝑒⟩↩𝛿−→→⟨Φ′ [𝑎 := 𝑎′] | 𝐾 ′ :: 𝑒′⟩

spec-spec

(𝑎′, spec 𝑣) = spec(Φ.𝑎, 𝐾 [𝑒]) ⟨Φ | • :: 𝑒⟩ 𝛿
↩−→∗ ⟨Φ′ | • :: 𝑣 ′⟩

Ξ′ = makeFrame𝑣=𝑣′ (Φ.𝑆, 𝐾 ′ :: 𝐾 [𝑒], 𝛿) :: Φ.Ξ 𝑒 ≠ fence

⟨Φ | 𝐾 ′ :: 𝐾 [𝑒]⟩↩0−→→⟨Φ[Ξ := Ξ′, 𝑎 := 𝑎′] | 𝐾 ′ :: 𝐾 [𝑣]⟩

spec-try-commit
(𝑎′, fence) = spec(Φ.𝑎, 𝑒)

fence ⟨Φ | 𝐾 :: 𝑒⟩ to ⟨Φ′ | 𝐾 ′ :: 𝑒′⟩
𝛿

⟨Φ | 𝐾 :: 𝑒⟩↩𝛿−→→⟨Φ′ [𝑎 := 𝑎′] | 𝐾 ′ :: 𝑒′⟩

⟨Φ | 𝐾 :: 𝑒⟩ 𝛿
↩−→ ⟨Φ | 𝐾 :: 𝑒⟩

spec-𝛽

⟨Φ.𝑆 | 𝐾 ℓ :: 𝑒ℓ⟩ 𝜖=⇒ ⟨𝑆 ′ | 𝐾 ′ℓ ′ :: 𝑒′ℓ
′
⟩

¬stalled(Φ.Ξ,Φ.𝑆, unlabel(𝜖)) Ξ = addEvent(Φ.Ξ, unlabel(𝜖))

⟨Φ | 𝐾 :: 𝑒⟩
unlabel(𝜖)
↩−−−−−−−→ ⟨Φ[𝑆 := 𝑆 ′,Ξ := Ξ] | 𝐾 ′ :: 𝑒′⟩

stalled(Ξ, 𝑆, 𝛿) : Ξ × 𝑆 × 𝛿 → 2

stalled(•, 𝑆, fence) = ⊤
stalled(Ξ :: Ξ, 𝑆, read𝑏 𝑣 ←[𝑧𝑏 [𝑧𝑜]) = (protect𝑝 ∈ Ξ.𝛿 ⋄Ξ.𝜇 ∧ 𝑆 (𝑧𝑏).𝑝 = protected)

∨ (stalled(Ξ, 𝑆, read𝑏 𝑣 ← [𝑧𝑏 [𝑧𝑜]))

1:28 M. Kolosick, B. Shivakumar, S. Cauligi, M. Patrignani, M. Vassena, R. Jhala, D. Stefan

stalled(Ξ :: Ξ, 𝑆,write𝑏 𝑣 ↦→ 𝑧𝑏 [𝑧𝑜]) = (protect𝑝 ∈ Ξ.𝛿 ⋄Ξ.𝜇 ∧ 𝑆 (𝑧𝑏).𝑝 = protected)
∨ (stalled(Ξ, 𝑆,write𝑏 𝑣 ↦→ 𝑧𝑏 [𝑧𝑜]))

stalled(Φ, 𝑆, 𝛿) = ⊥

addEvent(Ξ, 𝛿) : Ξ × 𝛿 → Ξ

addEvent(Ξ, 𝛿) : Ξ × 𝛿 → Ξ

addEvent(•, 𝛿) = •
addEvent(Ξ :: Ξ, 𝛿) = addEvent(Ξ, 𝛿) :: Ξ

addEvent(�(𝑆, 𝐾 :: 𝑒, 𝛿), 𝛿 ′) =
�(𝑆, 𝐾 :: 𝑒, 𝛿 ⋄ 𝛿 ′)

addEvent((𝑆, 𝐾 :: 𝑒, 𝛿, 𝜇), 𝛿 ′) = (𝑆, 𝐾 :: 𝑒, 𝛿, 𝜇) when 𝛿 ′ ≠ 𝜇′

addEvent((𝑆, 𝐾 :: 𝑒, 𝛿, 𝜇), read𝑏 𝑣 ← [𝑣𝑟) =
�(𝑆, 𝐾 :: 𝑒, 𝛿 ⋄ 𝜇) when 𝑣𝑟 ∈ writeLocs(𝛿)

addEvent((𝑆, 𝐾 :: 𝑒, 𝛿, 𝜇), read𝑏 𝑣 ← [𝑣𝑟) = (𝑆, 𝐾 :: 𝑒, 𝛿, 𝜇) when 𝑣𝑟 ∉ writeLocs(𝛿)
addEvent((𝑆, 𝐾 :: 𝑒, 𝛿, 𝜇),write𝑏 𝑣 ↦→ 𝑣𝑤) = (𝑆, 𝐾 :: 𝑒, 𝛿, 𝜇 ⋄write𝑏 𝑣 ↦→ 𝑣𝑤)

addEvent((𝑆, 𝐾 :: 𝑒, 𝛿, 𝜇), new𝑝 𝑧@𝑧𝑏) = (𝑆, 𝐾 :: 𝑒, 𝛿, 𝜇 ⋄ new𝑝 𝑧@𝑧𝑏)
addEvent((𝑆, 𝐾 :: 𝑒, 𝛿, 𝜇), protect𝑝) = (𝑆, 𝐾 :: 𝑒, 𝛿, 𝜇 ⋄ protect𝑝)

Fig. 12. Small step speculative semantics

fence ⟨Φ | 𝐾 :: 𝑒⟩ to ⟨Φ | 𝐾 :: 𝑒⟩
𝛿

fence-no-spec
Φ.Ξ = •

fence ⟨Φ | 𝐾 :: 𝑒⟩ to ⟨Φ | 𝐾 :: 𝑒⟩•

fence-rollback

Φ.Ξ =
�(𝑆, 𝐾 ′ :: 𝑒′, 𝛿) :: Ξ

fence ⟨Φ | 𝐾 :: 𝑒⟩ to ⟨Φ[𝑆 := 𝑆,Ξ := Ξ] | 𝐾 ′ :: 𝑒′⟩•

fence-commit
Φ.Ξ = (𝑆, 𝐾 ′ :: 𝑒′, 𝛿, 𝜇) :: Ξ

𝑆 ′ = commit(𝑆, 𝛿 ⋄ 𝜇) Ξ′ = addEvents(Ξ, 𝛿 ⋄ 𝜇)
fence ⟨Φ | 𝐾 :: 𝑒⟩ to ⟨Φ[𝑆 := 𝑆 ′,Ξ := Ξ′] | 𝐾 :: 𝑒⟩

𝛿

unlabel(𝛿 ℓ) ≜ 𝛿

unlabel(𝜏 ℓ�ℓ ′) ≜ 𝜏

writeLocs(𝑐) ≜ {𝑣𝑤 | write∈ 𝑣 ↦→ 𝑣𝑤𝑐}

commit(𝑆, •) ≜ 𝑆

commit(𝑆, 𝛿 ⋄ 𝛿 ′) ≜ commit(commit(𝑆, 𝛿), 𝛿 ′)
commit(𝑆,write𝑏 𝑣 ↦→ 𝑧𝑏 [𝑧𝑜]) ≜ 𝑆 (𝑧𝑏).[𝑧𝑜 := 𝑣]

commit(𝑆, protect𝑝) ≜ 𝑆 [𝑝 := 𝑝]
commit(𝑆, new𝑝 𝑧@𝑧𝑏) ≜ 𝑆 [𝑧𝑏 := {size = 𝑧, 𝑣 = ⊥, 𝑝 = 𝑝}]

commit(𝑆, 𝛿) ≜ 𝑆

makeFrame⊤ (𝑆, 𝐾 :: 𝑒, 𝛿) ≜ (𝑆, 𝐾 :: 𝑒, 𝛿, •)

Robust Constant-Time Cryptography 1:29

makeFrame⊥ (𝑆, 𝐾 :: 𝑒, 𝛿) ≜ �(𝑆, 𝐾 :: 𝑒, 𝛿)

Fig. 13. Speculative semantics auxiliary functions

⟨𝑆 | 𝐾 ℓ :: 𝑒ℓ⟩ 𝜖=⇒C ⟨𝑆 | 𝐾 ℓ :: 𝑒ℓ⟩

⟨𝑆 | 𝐾 ℓ :: 𝑒ℓ ′⟩ 𝜖=⇒ ⟨𝑆 | 𝐾2
ℓ2 :: 𝑒2ℓ

′
2 ⟩

𝛿 = [branch 𝑣 | public ⊑ 𝑆 (𝑧𝑏) ∧ 𝑧𝑜 ∈ [𝑆 (𝑧𝑏).size) ∧ 𝑣 = 𝑆 (𝑧𝑏).𝑣 (𝑧𝑜)]

⟨𝑆 | 𝐾 ℓ :: 𝑒ℓ ′⟩ 𝛿
app⋄𝜖

======⇒C ⟨𝑆 | 𝐾2
ℓ2 :: 𝑒2ℓ

′
2 ⟩

⟨Φ | 𝐾 :: 𝑒⟩ ↩𝛿−→→C ⟨Φ | 𝐾 :: 𝑒⟩

⟨Φ | 𝐾 :: 𝑒⟩↩𝛿−→→⟨Φ′ | 𝐾 ′ :: 𝑒′⟩
𝛿 ′ = [branch 𝑣 | ⟨Φ[𝑆.𝑝 := public] | ! 𝑧𝑏 [𝑧𝑜]⟩

𝜇
↩−→ ⟨Φ′ | 𝑣⟩]

⟨Φ | 𝐾 :: 𝑒⟩ ↩𝛿
′⋄𝛿−−−→→C ⟨Φ′ | 𝐾 ′ :: 𝑒′⟩

Fig. 14. Concurrent observer semantics

B Attacker models

𝐴 ::= 𝜏lib�app ⋄ 𝛿app ⋄ 𝜏app�lib

𝐿 ::= 𝜏app�lib ⋄ 𝛿lib ⋄ 𝜏lib�app

𝑇 ::= 𝜏lib�app ⋄ 𝛿app ⋄ (end 𝑣)app�lib | 𝐴 ◦ 𝐿 ◦𝑇

Fig. 15. Traces

API contexts Γ ::= • | (𝑓 : 𝑧) :: Γ
secret contexts Δ ::= • | 𝑥 ↦→ (𝑧𝑙𝑜𝑐 , 𝑧𝑙𝑒𝑛) :: Δ

libraries 𝐿 ::= • | 𝑓 ↦→ (𝑧𝑓 , 𝜆𝑥 .𝑒) :: 𝐿
heaplets 𝐻 : Z ⇀𝑚

Fig. 16. Syntax of programs

Γ ⊨ 𝐿

• ⊨ •
length(𝑥) = 𝑧 Γ ⊨ 𝐿 𝑧𝑙𝑜𝑐 ∉ locs(𝐿)

(𝑓 : 𝑧) :: Γ ⊨ 𝑓 ↦→ (𝑧𝑓 , 𝜆𝑥 .𝑒) :: 𝐿
(𝑓 : 𝑧) :: Γ ⊨ 𝐿 𝑧𝑔 ∉ locs(𝐿)
(𝑓 : 𝑧) :: Γ ⊨ 𝑔 ↦→ (𝑧𝑔, 𝜆𝑥 .𝑒) :: 𝐿

Γ,Δ ⊢ (𝐻, 𝑒)

fv(𝐻) ∪ fv(𝑒) ⊆ dom(Γ) ⊎ dom(Δ) ∀𝜆ℓ𝑥 .𝑒 ∈ cod(𝐻).ℓ = app

Γ,Δ ⊢ (𝐻, 𝑒)

𝐿 ⊨ 𝑆

∀𝜆ℓ𝑥 .𝑒 ∈ cod(𝑆.𝐻). ℓ = app

• ⊨ 𝑆
𝑆 (𝑧𝑓) = 𝜆lib𝑥 .𝑒 𝐿 ⊨ 𝑆 [𝐻 := 𝑆.𝐻 − {𝑧𝑓 }]

𝑓 ↦→ (𝑧𝑓 , 𝜆𝑥 .𝑒) :: 𝐿 ⊨ 𝑆

1:30 M. Kolosick, B. Shivakumar, S. Cauligi, M. Patrignani, M. Vassena, R. Jhala, D. Stefan

Δ | 𝐻 ⊨ 𝑆 = 𝑆

𝑆.𝐻 = 𝐻 𝑆.𝑝 = app

• | 𝐻 ⊨ 𝑆 = 𝑆

𝑆 (𝑧𝑙𝑜𝑐).size = 𝑆 ′ (𝑧𝑙𝑜𝑐).size = 𝑧𝑙𝑒𝑛
Δ | 𝐻 ⊨ 𝑆 [𝐻 := 𝑆.𝐻 − {𝑧𝑙𝑜𝑐 }] = 𝑆 ′ [𝐻 := 𝑆 ′ .𝐻 − {𝑧𝑙𝑜𝑐 }]

𝑥 ↦→ (𝑧𝑙𝑜𝑐 , 𝑧𝑙𝑒𝑛) :: Δ | 𝐻 ⊨ 𝑆 = 𝑆 ′

𝐿 | Δ | 𝐻 ⊨ 𝑆 = 𝑆

𝐿 | Δ | 𝐻 ⊨ 𝑆

Δ | 𝐻 ⊨ 𝑆 = 𝑆 ′

• | Δ | 𝐻 ⊨ 𝑆 = 𝑆 ′

𝑆.𝐻 (𝑧𝑓) = 𝑆.𝐻 ′ (𝑧𝑓) = 𝜆lib𝑥 .𝑒
𝐿 | Δ | 𝐻 ⊨ 𝑆 [𝐻 := 𝑆.𝐻 − {𝑧𝑓 }] = 𝑆 ′ [𝐻 := 𝑆 ′ .𝐻 − {𝑧𝑓 }]

𝑓 ↦→ (𝑧𝑓 , 𝜆𝑥 .𝑒) :: 𝐿 | Δ | 𝐻 ⊨ 𝑆 = 𝑆 ′

𝐿 | Δ | 𝐻 ⊨ 𝑆 = 𝑆

𝐿 | Δ | 𝐻 ⊢ 𝑆

Fig. 17. Program well-formedness judgments

⟨𝑆 | • :: 𝑒app⟩ 𝑇=⇒∗ ⟨𝑆 ′ | • :: 𝑣app⟩

⟨𝑆 | 𝑒⟩ ↓𝑇 ⟨𝑆 ′ | 𝑣⟩

⟨𝑆 | • :: 𝑒app⟩ 𝜖=⇒∗C ⟨𝑆
′ | • :: 𝑣app⟩

⟨𝑆 | 𝑒⟩ ↓𝜖C ⟨𝑆
′ | 𝑣⟩

⟨Φ | • :: 𝑒⟩ ↩𝛿−→→∗ ⟨Φ′ | • :: 𝑣⟩ Φ′ .Ξ = •

⟨Φ | 𝑒⟩ ↓𝛿S ⟨Φ
′ | 𝑣⟩

⟨Φ | • :: 𝑒⟩ ↩𝛿−→→∗C ⟨Φ
′ | • :: 𝑣⟩ Φ′ .Ξ = •

⟨Φ | 𝑒⟩ ↓𝛿SC ⟨Φ
′ | 𝑣⟩

traces(⟨𝑆 | 𝑒⟩) ≜ {begin ⋄𝑇 ⋄ end 𝑣 | ⟨𝑆 | 𝑒⟩ ↓𝑇 ⟨𝑆 ′ | 𝑣⟩}
concurrentTraces(⟨𝑆 | 𝑒⟩) ≜ {begin ⋄ 𝜖 ⋄ end 𝑣 | ⟨𝑆 | 𝑒⟩ ↓𝜖C ⟨𝑆

′ | 𝑣⟩}
specTraces(⟨Φ | 𝑒⟩) ≜ {begin ⋄ 𝛿 ⋄ end 𝑣 | ⟨Φ | 𝑒⟩ ↓𝛿S ⟨Φ

′ | 𝑣⟩}
concurrentSpecTraces(⟨Φ | 𝑒⟩) ≜ {begin ⋄ 𝛿 ⋄ end 𝑣 | ⟨Φ | 𝑒⟩ ↓𝛿SC ⟨Φ

′ | 𝑣⟩}

Fig. 18. Traces

𝑒 [•] ≜ 𝑒

𝑒 [𝑥 ↦→ (𝑧𝑏, 𝑧) :: Δ] ≜ (𝑒 [𝑧𝑏/𝑥]) [Δ]
𝐻 [Δ] ≜ 𝑧 ↦→ 𝐻 (𝑧) [Δ]

{size, 𝑝, 𝑣}[Δ] ≜ {size, 𝑝, 𝑣 [Δ]}
(𝜆ℓ𝑥 .𝑒) [Δ] ≜ 𝜆ℓ𝑥 .(𝑒 [Δ])

𝑒 [•] ≜ 𝑒

𝑒 [𝑓 ↦→ (𝑧𝑓 , 𝜆lib𝑥 .𝑒) :: 𝐿] ≜ (𝑒 [𝑧𝑓 /𝑓]) [𝐿]
𝐻 [𝐿] ≜ 𝑧 ↦→ 𝐻 (𝑧) [𝐿]

{size, 𝑝, 𝑣}[𝐿] ≜ {size, 𝑝, 𝑣 [𝐿]}
(𝜆ℓ𝑥 .𝑒) [𝐿] ≜ 𝜆ℓ𝑥 .(𝑒 [𝐿])

Robust Constant-Time Cryptography 1:31

We define four attacker models: unrestricted attackers, read-only attackers, memory-safe attack-
ers, and speculative attackers.

Definition 4 (Applications). For a given API context Γ and secret context Δ, an application is a
heaplet and an expression (𝐻, 𝑒) such that Γ,Δ ⊢ (𝐻, 𝑒).

Definition 5 (Read-only attackers). We say an application Γ,Δ ⊢ (𝐻, 𝑒) is a read-only attacker
if, for all libraries Γ ⊨ 𝐿, initial states 𝑆0 such that 𝐿 | Δ | 𝐻 ⊨ 𝑆0, and traces 𝑇 ∈ traces(⟨𝑆0 [Δ] [𝐿] |
𝑒 [Δ] [𝐿]⟩), Γ ⊢ read-only 𝑇 .

Definition 6 (Memory-safe attackers). We say an application Γ,Δ ⊢ (𝐻, 𝑒) is a read-only
attacker if, for all libraries Γ ⊨ 𝐿, initial states 𝑆0 such that 𝐿 | Δ | 𝐻 ⊨ 𝑆0, and traces 𝑇 ∈
traces(⟨𝑆0 [Δ] [𝐿] | 𝑒 [Δ] [𝐿]⟩), Γ ⊢ mem-safe 𝑇 .

To capture speculative attackers we consider (non-speculatively) memory safe attackers run
in the speculative semantics. To capture concurrent observers we consider read-only attackers’
concurrent traces.

Γ ⊢ read-only 𝑇

𝐴 = 𝜏1
lib�app ⋄ 𝛿𝐴app ⋄ 𝜏2app�lib 𝐿 = 𝜏2

app�lib ⋄ 𝛿𝐿lib ⋄ 𝜏3lib�app

𝜏2 = call 𝑧𝑓 ⇒ 𝑧𝑓 ∈ dom(Γ) wf-read-only 𝛿𝐴 wf-read-only 𝛿𝐿 =⇒ Γ ⊢ read-only 𝑇
Γ ⊢ read-only 𝐴 ◦ 𝐿 ◦𝑇

wf-read-only 𝛿

Γ ⊢ read-only 𝜏lib�app ⋄ 𝛿app ⋄ (end 𝑣)app�lib

Γ ⊢ mem-safe 𝑇

𝐴 = 𝜏1
lib�app ⋄ 𝛿𝐴app ⋄ 𝜏2app�lib 𝐿 = 𝜏2

app�lib ⋄ 𝛿𝐿lib ⋄ 𝜏3lib�app

𝜏2 = call 𝑧𝑓 ⇒ 𝑧𝑓 ∈ dom(Γ) wf-mem-safe 𝛿𝐴 wf-read-only 𝛿𝐿 =⇒ Γ ⊢ read-only 𝑇
Γ ⊢ mem-safe 𝐴 ◦ 𝐿 ◦𝑇

wf-mem-safe 𝛿

Γ ⊢ mem-safe 𝜏lib�app ⋄ 𝛿app ⋄ (end 𝑣)app�lib

wf-read-only 𝛿

wf-read-only new𝑝 𝑧@𝑧𝑏 wf-read-only read𝑏 𝑣 ←[𝑧𝑏 [𝑧𝑜]

wf-read-only writeib 𝑣 ↦→ 𝑧𝑏 [𝑧𝑜] wf-read-only call 𝑧 wf-read-only branch 𝑣

wf-read-only protect𝑝 wf-read-only 0 wf-read-only ∅

wf-read-only 𝛿 wf-read-only 𝛿

wf-read-only 𝛿 ⋄ 𝛿

1:32 M. Kolosick, B. Shivakumar, S. Cauligi, M. Patrignani, M. Vassena, R. Jhala, D. Stefan

wf-mem-safe 𝛿

wf-mem-safe new𝑝 𝑧@𝑧𝑏 wf-mem-safe readib 𝑣 ← [𝑧𝑏 [𝑧𝑜]

wf-mem-safe writeib 𝑣 ↦→ 𝑧𝑏 [𝑧𝑜] wf-mem-safe call 𝑧 wf-mem-safe branch 𝑣

wf-mem-safe protect𝑝 wf-mem-safe 0 wf-mem-safe ∅

wf-mem-safe 𝛿 wf-mem-safe 𝛿

wf-mem-safe 𝛿 ⋄ 𝛿

Fig. 19. Attacker model judgments

B.1 Security definitions

ct(𝜖ℓ) ≜ ct(𝜖)
ct(𝜏 ℓ�ℓ ′) ≜ ct(𝜏)
ct(begin) ≜ 0
ct(end 𝑣) ≜ end 𝑣

ct(call 𝑧) ≜ call 𝑧

ct(ret 𝑣) ≜ 0
ct(new𝑝 𝑧@𝑧𝑏) ≜ new𝑝 𝑧@𝑧𝑏

ct(read𝑏 𝑣 ← [𝑧𝑏 [𝑧𝑜]) ≜ read← [𝑧𝑏 [𝑧𝑜]
ct(write𝑏 𝑣 ↦→ 𝑧𝑏 [𝑧𝑜]) ≜ write ↦→ 𝑧𝑏 [𝑧𝑜]

ct(branch 𝑣) ≜ branch 𝑣

ct(fence) ≜ 0
ct(protect𝑝) ≜ 0

ct(0) ≜ 0

Fig. 20. Constant time events

𝑒Γ ::= 𝑓 (𝑣) with 𝑓 ∈ Γ.

Definition 7 (Classical constant time). We say a library Γ ⊨ 𝐿 is classically constant time
if, for all secret contexts Δ, classical “applications” Γ,Δ ⊢ (𝐻, 𝑒Γ), and initial states 𝑆0, 𝑆 ′0 such that
𝐿 | Δ | 𝐻 ⊨ 𝑆0 = 𝑆 ′0, we have that for all traces ⟨𝑆0 [Δ] [𝐿] | 𝑒Γ [Δ] [𝐿]⟩ ↓𝛿 ⟨𝑆1 | 𝑣⟩ there exists a trace
⟨𝑆 ′0 [Δ] [𝐿] | 𝑒Γ [Δ] [𝐿]⟩ ↓𝛿

′ ⟨𝑆 ′1 | 𝑣⟩ such that ct(𝛿) = ct(𝛿 ′) and 𝑆1 (dom(𝐻)) = 𝑆 ′1 (dom(𝐻)).

Definition 8 (Robust constant time). We say a library Γ ⊨ 𝐿 is robustly constant time for an
attacker class predΓ,Δ if, for all secret contexts Δ, applications Γ,Δ ⊢ (𝐻, 𝑒) such that predΓ,Δ (𝐻, 𝑒),
and initial states 𝑆0, 𝑆 ′0 such that 𝐿 | Δ | 𝐻 ⊨ 𝑆0 = 𝑆 ′0 we have that ct(traces(⟨𝑆0 [Δ] [𝐿] | 𝑒 [Δ] [𝐿]⟩)) =
ct(traces(⟨𝑆 ′0 [Δ] [𝐿] | 𝑒 [Δ] [𝐿]⟩)).

Robust Constant-Time Cryptography 1:33

Definition 9 (Robust constant time for concurrent observers). We say a library Γ ⊨ 𝐿
is robustly constant time for concurrent observers if, for all secret contexts Δ, read-only appli-
cations Γ,Δ ⊢ (𝐻, 𝑒), and initial states 𝑆0, 𝑆 ′0 such that 𝐿 | Δ | 𝐻 ⊨ 𝑆0 = 𝑆 ′0 we have that
ct(concurrentTraces(⟨𝑆0 [Δ] [𝐿] | 𝑒 [Δ] [𝐿]⟩)) = ct(concurrentTraces(⟨𝑆 ′0 [Δ] [𝐿] | 𝑒 [Δ] [𝐿]⟩)).

Definition 10 (Classical speculative constant time). We say a library Γ ⊨ 𝐿 is classically
speculative constant time with respect to a speculation oracle spec : 𝐴 × 𝑆 × 𝑒 → 𝐴 × 𝑑 if, for
all secret contexts Δ, classical “applications” Γ,Δ ⊢ (𝐻, 𝑒Γ), initial states 𝑆0, 𝑆 ′0 such that 𝐿 | Δ |
𝐻 ⊨ 𝑆0 = 𝑆 ′0, microarchitectural states 𝑎 : 𝐴, Φ0 = {𝑆 = 𝑆0 [Δ] [𝐿], 𝑎 = 𝑎,Ξ = •}, and Φ′0 = {𝑆 =

𝑆 ′0 [Δ] [𝐿], 𝑎 = 𝑎,Ξ = •}, we have that for all traces ⟨Φ0 | 𝑒Γ [Δ] [𝐿]⟩ ↓𝛿S ⟨Φ1 | 𝑣⟩ there exists a
trace ⟨Φ′0 | 𝑒Γ [Δ] [𝐿]⟩ ↓𝛿

′
S ⟨Φ

′
1 | 𝑣⟩ such that ct(𝛿) = ct(𝛿 ′), Φ1.𝑆 (dom(𝐻)) = Φ′1.𝑆 (dom(𝐻)), and

Φ1.𝑎 = Φ′1.𝑎.

Definition 11 (Robust speculative constant time). We say a library Γ ⊨ 𝐿 is robustly
speculative constant time with respect to a speculation oracle spec : 𝐴×𝑆 ×𝑒 → 𝐴×𝑑 if, for all secret
contexts Δ, memory-safe applications Γ,Δ ⊢ (𝐻, 𝑒), initial states 𝑆0, 𝑆 ′0 such that 𝐿 | Δ | 𝐻 ⊨ 𝑆0 = 𝑆 ′0,
microarchitectural states 𝑎 : 𝐴, Φ0 = {𝑆 = 𝑆0 [Δ] [𝐿], 𝑎 = 𝑎,Ξ = •}, and Φ′0 = {𝑆 = 𝑆 ′0 [Δ] [𝐿], 𝑎 =

𝑎,Ξ = •}, we have that ct(specTraces(⟨Φ0 | 𝑒 [Δ] [𝐿]⟩)) = ct(specTraces(⟨Φ′0 | 𝑒 [Δ] [𝐿]⟩)).

Definition 12 (Robust speculative constant time for concurrent observers). We say
a library Γ ⊨ 𝐿 is robustly speculative constant time for concurrent observers with respect to a
speculation oracle spec : 𝐴 × 𝑆 × 𝑒 → 𝐴 × 𝑑 if, for all secret contexts Δ, memory-safe applications
Γ,Δ ⊢ (𝐻, 𝑒), initial states 𝑆0, 𝑆 ′0 such that 𝐿 | Δ | 𝐻 ⊨ 𝑆0 = 𝑆 ′0, microarchitectural states 𝑎 : 𝐴,
Φ0 = {𝑆 = 𝑆0 [Δ] [𝐿], 𝑎 = 𝑎,Ξ = •}, and Φ′0 = {𝑆 = 𝑆 ′0 [Δ] [𝐿], 𝑎 = 𝑎,Ξ = •}, we have that
ct(concurrentSpecTraces(⟨Φ0 | 𝑒 [Δ] [𝐿]⟩)) = ct(concurrentSpecTraces(⟨Φ′0 | 𝑒 [Δ] [𝐿]⟩)).

C Compilers

on-return𝑓 (𝑣) = 𝑓 (𝑣)
on-return𝑓 (𝑥) = 𝑓 (𝑥)

on-return𝑓 (𝑒1; 𝑒2) = 𝑒1; on-return𝑓 (𝑒2)
on-return𝑓 (fence) = 𝑓 (fence)

on-return𝑓 (if 𝑒 then 𝑒1 else 𝑒2) = if 𝑒 then on-return𝑓 (𝑒1) else on-return𝑓 (𝑒2)
on-return𝑓 (𝑒) = let 𝑥 = 𝑒 in 𝑓 (𝑥)

add-protect(𝑒) = protectpublic; 𝑒
add-fence(𝑒) = fence; 𝑒

copy-in(•, 𝑒) = 𝑒

copy-in(𝑓 ↦→ (𝑥, 𝑒𝑙𝑒𝑛) :: rest, 𝑒) = let 𝑦 = newpublic 𝑒𝑙𝑒𝑛 in copy(𝑦, 𝑥, 𝑒𝑙𝑒𝑛); copy-in(𝑒 [𝑦/𝑥])

copy-out(•, 𝑒) = 𝑒

copy-out(𝑓 ↦→ (𝑥, 𝑒𝑙𝑒𝑛) :: rest, 𝑒) = copy(𝑥,𝑦, 𝑒𝑙𝑒𝑛); copy-out(𝑒)

1:34 M. Kolosick, B. Shivakumar, S. Cauligi, M. Patrignani, M. Vassena, R. Jhala, D. Stefan

Cro (Γ, 𝑓 ↦→ (𝑧𝑓 , 𝜆𝑥 .𝑒)) = 𝜆𝑥.𝑒𝑛𝑒𝑤
where 𝑒𝑠𝑢𝑏𝑠𝑡 = 𝑒 [newprotected 𝑒′/new𝑝 𝑒′]
where 𝑒𝑏𝑜𝑑𝑦 = on-returnadd-protect (𝑒𝑠𝑢𝑏𝑠𝑡)
where 𝑒𝑛𝑒𝑤 = protectprotected; 𝑒𝑏𝑜𝑑𝑦
if 𝑓 ∈ Γ

Cro (Γ, 𝑓 ↦→ (𝑧𝑓 , 𝜆𝑥 .𝑒)) = 𝜆𝑥.(𝑒 [newprotected 𝑒′/new𝑝 𝑒′])
if 𝑓 ∉ Γ

Cspec (Γ, 𝑓 ↦→ (𝑧𝑓 , 𝜆𝑥 .𝑒)) = 𝜆𝑥.on-returnadd-fence (𝑒𝑛𝑒𝑤)
where 𝜆𝑥 .𝑒𝑛𝑒𝑤 = Cro (Γ, 𝑓 ↦→ (𝑧𝑓 , 𝜆𝑥 .𝑒))
if 𝑓 ∈ Γ

Cspec (Γ, 𝑓 ↦→ (𝑧𝑓 , 𝜆𝑥 .𝑒)) = Cro (Γ, 𝑓 ↦→ (𝑧𝑓 , 𝜆𝑥 .𝑒))
if 𝑓 ∉ Γ

Cco (Γ, 𝑓 ↦→ (𝑧𝑓 , 𝜆𝑥 .𝑒)) = 𝜆𝑥.on-returncopy-out(used) (𝑒𝑛𝑒𝑤)
where 𝑒𝑛𝑒𝑤 = copy-in(used, 𝑒)
if 𝑓 ∈ Γ

Cco (Γ, 𝑓 ↦→ (𝑧𝑓 , 𝜆𝑥 .𝑒)) = 𝑓 ↦→ (𝑧𝑓 , 𝜆𝑥 .𝑒)
if 𝑓 ∉ Γ

Cro-co (Γ, 𝑓 ↦→ (𝑧𝑓 , 𝜆𝑥 .𝑒)) = Cro (Γ, 𝑓 ↦→ (𝑧𝑓 , 𝜆𝑥 .𝑒𝑛𝑒𝑤)
where 𝜆𝑥 .𝑒𝑛𝑒𝑤 = Cco (Γ, 𝑓 ↦→ (𝑧𝑓 , 𝜆𝑥 .𝑒))
if 𝑓 ∈ Γ

Cro-co (Γ, 𝑓 ↦→ (𝑧𝑓 , 𝜆𝑥 .𝑒)) = Cro (Γ, 𝑓 ↦→ (𝑧𝑓 , 𝜆𝑥 .𝑒))
if 𝑓 ∉ Γ

Cspec-co (Γ, 𝑓 ↦→ (𝑧𝑓 , 𝜆𝑥 .𝑒)) = Cspec (Γ, 𝑓 ↦→ (𝑧𝑓 , 𝜆𝑥 .𝑒𝑛𝑒𝑤)
where 𝜆𝑥 .𝑒𝑛𝑒𝑤 = Cco (Γ, 𝑓 ↦→ (𝑧𝑓 , 𝜆𝑥 .𝑒))
if 𝑓 ∈ Γ

Cspec-co (Γ, 𝑓 ↦→ (𝑧𝑓 , 𝜆𝑥 .𝑒)) = Cspec (Γ, 𝑓 ↦→ (𝑧𝑓 , 𝜆𝑥 .𝑒))
if 𝑓 ∉ Γ

CA (Γ ⊨ •) = •
CA (Γ ⊨ 𝑓 ↦→ (𝑧𝑓 , 𝜆𝑥 .𝑒) :: 𝐿) = 𝑓 ↦→ (𝑧𝑓 , CA (Γ, 𝑓 ↦→ (𝑧𝑓 , 𝜆𝑥 .𝑒))) :: CA (Γ ⊨ 𝐿)

For the concurrent compilers we assume we have been provided a labeling of arguments used :
𝑓 ↦→ (𝑥, 𝑒𝑙𝑒𝑛) for all functions in Γ. The variables are the argument names and the expressions
are the length of the buffer. The correctness condition for the labeling is the following: For all
secret contexts Δ, classical “applications” Γ,Δ ⊢ (𝐻, 𝑒Γ), and initial states Cco (Γ ⊨ 𝐿) | Δ | 𝐻 ⊨ 𝑆 , if
𝑇 ∈ traces(⟨𝑆 [Δ] [Cco (Γ ⊨ 𝐿)] | 𝑒Γ [Δ] [Cco (Γ ⊨ 𝐿)]⟩) and 𝜇 is the set of memory events in 𝑇 , then
𝜇 = 𝜇1 ⋄ 𝜇2 ⋄ 𝜇3 where

(1) 𝜇1 = newpublic 𝑣𝑙𝑒𝑛@𝑧′𝑏 ⋄ readib 𝑣 ← [𝑧𝑏 [𝑧𝑜] ⋄writeib 𝑣 ↦→ 𝑧′
𝑏
[𝑧𝑜] and 𝑧𝑏 ∈ dom(𝐻)

(2) for all 𝜇2 = read𝑏 𝑣 ←[𝑧𝑏 [𝑧𝑜] or 𝜇2 = write𝑏 𝑣 ↦→ 𝑧𝑏 [𝑧𝑜], 𝑧𝑏 ∉ dom(𝐻)
(3) 𝜇3 = readib 𝑣 ← [𝑧′

𝑏
[𝑧𝑜] ⋄writeib 𝑣 ↦→ 𝑧𝑏 [𝑧𝑜]

Robust Constant-Time Cryptography 1:35

and if ⟨𝑆 [Δ] [𝐿] | 𝑒Γ [Δ] [𝐿]⟩ ↓𝑇1 ⟨𝑆 ′ | 𝑣⟩ then there exists a 𝑇 ′1 such that ⟨𝑆 [Δ] [Cco (Γ ⊨ 𝐿)] |
𝑒Γ [Δ] [Cco (Γ ⊨ 𝐿)]⟩ ↓𝑇1 ⟨𝑆 ′′ | 𝑣⟩.

D Compiler proofs

Δ | 𝐻 ⊨protected 𝑆 = 𝑆

𝑆.𝐻 = 𝐻 𝑆.𝑝 = app

• | 𝐻 ⊨protected 𝑆 = 𝑆

𝑆 (𝑧𝑙𝑜𝑐).size = 𝑆 ′ (𝑧𝑙𝑜𝑐).size = 𝑧𝑙𝑒𝑛
𝑆 (𝑧𝑙𝑜𝑐).𝑝 = 𝑆 ′ (𝑧𝑙𝑜𝑐).𝑝 = protected

Δ | 𝐻 ⊨protected 𝑆 [𝐻 := 𝑆.𝐻 − {𝑧𝑙𝑜𝑐 }] = 𝑆 ′ [𝐻 := 𝑆 ′ .𝐻 − {𝑧𝑙𝑜𝑐 }]
𝑥 ↦→ (𝑧𝑙𝑜𝑐 , 𝑧𝑙𝑒𝑛) :: Δ | 𝐻 ⊨protected 𝑆 = 𝑆 ′

D.1 Read-only protections

Lemma 1 (Functions are fixed). For all ⟨𝑆1 | 𝐾1
ℓ𝐾1 :: 𝑒1ℓ1⟩

𝜖
=⇒∗ ⟨𝑆2 | 𝐾2

ℓ𝐾2 :: 𝑒2ℓ2⟩,{
𝑧𝑓 ↦→ 𝜆ℓ𝑥 .𝑒 | 𝑆1 (𝑧𝑓) = 𝜆ℓ𝑥 .𝑒

}
=
{
𝑧𝑓 ↦→ 𝜆ℓ𝑥 .𝑒 | 𝑆2 (𝑧𝑓) = 𝜆ℓ𝑥 .𝑒

}
.

Proof. By induction on the operational semantics. □

Lemma 2 (Constant time is memory safe). If Γ ⊨ 𝐿 is classically constant time and we have a
secret context Δ, classical “application” Γ,Δ ⊢ (𝐻, 𝑒Γ) and an initial state 𝐿 | Δ | 𝐻 ⊢ 𝑆 , then for all
𝑇 ∈ trace(⟨𝑆 [Δ] [𝐿] | 𝑒 [Δ] [𝐿]⟩) and 𝛿 ∈ 𝑇 , wf-mem-safe 𝛿 .

Proof. By induction on the operational semantics. □

Lemma 3 (Cro preserves classic constant time). If Γ ⊨ 𝐿 is classically constant time then
CroΓ ⊨ 𝐿 is classically constant time.

Proof. By induction on the compiler. □

Lemma 4 (Cro only allocates protected memory). If Γ ⊨ 𝐿 is classically constant time and we
have a secret context Δ, classical “application” Γ,Δ ⊢ (𝐻, 𝑒Γ) and an initial state 𝐿 | Δ | 𝐻 ⊢ 𝑆 , then if
⟨𝑆 [Δ] [𝐿] | 𝑒 [Δ] [𝐿]⟩ ↓𝑇 ⟨𝑆 ′ | 𝑣⟩, then {𝑆 (𝑧𝑏) | 𝑆 (𝑧𝑏).𝑝 = public} = {𝑆 ′ (𝑧𝑏) | 𝑆 ′ (𝑧𝑏).𝑝 = public}

Proof. By induction on the compiler and the assumption of classical constant time. □

Definition 13. We define our state invariant, inv(𝑆, 𝑆 ′) as follows:
(1) 𝑆.𝑝 = 𝑆 ′ .𝑝 = public
(2) ∀𝑧 : Z.𝑆 (𝑧) ≠ 𝑆 ′ (𝑧) ⇒ 𝑆 (𝑧).𝑝 = 𝑆 ′ (𝑧).𝑝 = protected
(3) dom(𝑆) = dom(𝑆 ′)

1:36 M. Kolosick, B. Shivakumar, S. Cauligi, M. Patrignani, M. Vassena, R. Jhala, D. Stefan

AJ𝜏lib�app ⋄ 𝛿app ⋄ 𝜏app�libK ≜

(𝑆, 𝑆 ′, 𝐾 ℓ , 𝑒, 𝑆1, 𝑆 ′1, 𝐾1
ℓ1 , 𝑒1)

��������������������������

∀𝜖1, 𝜖2. 𝜖1 ⋄ 𝜖2 = 𝛿app ⇒

∃𝑆0, 𝑆 ′0, 𝐾0
ℓ0 , 𝑒0.

⟨𝑆 | 𝐾 ℓ :: 𝑒app⟩
𝜖1
==⇒∗ ⟨𝑆0 | 𝐾0

ℓ0 :: 𝑒0app⟩

⟨𝑆 ′ | 𝐾 ℓ :: 𝑒app⟩
𝜖1
==⇒∗ ⟨𝑆 ′0 | 𝐾0

ℓ0 :: 𝑒0app⟩
inv(𝑆0, 𝑆 ′0)

⟨𝑆 | 𝐾 ℓ :: 𝑒app⟩ 𝛿
app⋄𝜏app�lib

============⇒∗ ⟨𝑆1 | 𝐾1
ℓ1 :: 𝑒1lib⟩

⟨𝑆 ′ | 𝐾 ℓ :: 𝑒app⟩ 𝛿
app⋄𝜏app�lib

============⇒∗ ⟨𝑆 ′1 | 𝐾1
ℓ1 :: 𝑒1lib⟩

inv(𝑆1, 𝑆 ′1)


LJ𝜏app�lib ⋄ 𝛿lib ⋄ 𝜏lib�appK ≜

(𝑆, 𝑆 ′, 𝐾 ℓ , 𝑒, 𝑆1, 𝑆 ′1, 𝐾1
ℓ1 , 𝑒1)

����������������

∃𝛿 ′ .

⟨𝑆 | 𝐾 ℓ :: 𝑒lib⟩ 𝛿
lib⋄𝜏lib�app

============⇒∗ ⟨𝑆1 | 𝐾1
ℓ1 :: 𝑒1app⟩

⟨𝑆 ′ | 𝐾 ℓ :: 𝑒lib⟩ 𝛿
lib⋄𝜏lib�app

============⇒∗ ⟨𝑆 ′1 | 𝐾1
ℓ1 :: 𝑒1app⟩

ct(𝛿lib) = ct(𝛿 ′lib)
inv(𝑆1, 𝑆 ′1)


TJ𝐴 ◦ 𝐿 ◦𝑇 K ≜

(⟨𝑆 | 𝐾 ℓ :: 𝑒⟩, ⟨𝑆 ′ | 𝐾 ℓ :: 𝑒⟩)

�����������
∃𝑆1, 𝑆 ′1, 𝑆2, 𝑆 ′2, 𝐾1

ℓ1 , 𝑒1, 𝐾2
ℓ2 , 𝑒2.

(𝑆, 𝑆 ′, 𝐾 ℓ , 𝑒, 𝑆1, 𝑆 ′1, 𝐾1
ℓ1 , 𝑒1) ∈ AJ𝐴K

(𝑆1, 𝑆 ′1, 𝐾1
ℓ1 , 𝑒1, 𝑆2, 𝑆

′
2, 𝐾2

ℓ2 , 𝑒1) ∈ LJ𝐿K

(⟨𝑆2 | 𝐾2
ℓ2 :: 𝑒2app⟩, ⟨𝑆 ′2 | 𝐾2

ℓ2 :: 𝑒2app⟩)) ∈ TJ𝑇 K


TJ𝜏lib�app ⋄ 𝛿app ⋄ (end 𝑣)app�libK ≜{

(⟨𝑆 | 𝐾 ℓ :: 𝑒⟩, ⟨𝑆 ′ | 𝐾 ℓ :: 𝑒⟩)
����� ∃𝑆1, 𝑆 ′1, 𝐾1

ℓ1 .

(𝑆, 𝑆 ′, 𝐾 ℓ , 𝑒, 𝑆1, 𝑆 ′1, 𝐾1
ℓ1 , 𝑣) ∈ AJ𝛿app ⋄ (end 𝑣)app�libK

}

Fig. 21. Semantic interpretation of non-speculative traces

Lemma 5. If ⟨𝑆 | 𝐾 ℓ :: 𝑒app⟩ 𝛿
app

===⇒∗ ⟨𝑆1 | 𝐾1
ℓ1 :: 𝑒1app⟩,wf-read-only 𝛿app, and inv(𝑆, 𝑆 ′), then there

exists an 𝑆 ′1 such that ⟨𝑆 ′ | 𝐾 ℓ :: 𝑒app⟩ 𝛿
app

===⇒∗ ⟨𝑆 ′1 | 𝐾1
ℓ1 :: 𝑒1app⟩ and inv(𝑆1, 𝑆 ′1).

Proof. We proceed by induction on the reduction relation. The zero step case is immediate by

assumption. For the inductive case we have that ⟨𝑆 | 𝐾 ℓ :: 𝑒app⟩
𝛿0

app

====⇒∗ ⟨𝑆0 | 𝐾0
ℓ0 :: 𝑒0app⟩

𝛿app

===⇒ ⟨𝑆1 |

Robust Constant-Time Cryptography 1:37

𝐾1
ℓ1 :: 𝑒1app⟩ and must show that ⟨𝑆 ′ | 𝐾 ℓ :: 𝑒app⟩

𝛿0
app⋄𝛿app

=========⇒∗ ⟨𝑆1 | 𝐾1
ℓ1 :: 𝑒1app⟩ such that inv(𝑆1, 𝑆 ′1).

By our inductive hypothesis we have that there exists an 𝑆 ′0 such that ⟨𝑆 ′ | 𝐾 ℓ :: 𝑒app⟩
𝛿0

app

====⇒∗ ⟨𝑆0 |

𝐾0
ℓ0 :: 𝑒0app⟩ and inv(𝑆0, 𝑆 ′0). We proceed by case analysis on 𝛿 .
The only cases that interact with the state (the only parts that differ) are dereferencing, writes,

allocation, and protect. In all other cases we let 𝑆 ′1 = 𝑆 ′0 and then it is immediate that ⟨𝑆 ′0 |
𝐾0

ℓ0 :: 𝑒0app⟩
𝛿app

===⇒ ⟨𝑆 ′0 | 𝐾1
ℓ1 :: 𝑒1app⟩ and the invariant holds by assumption.

In the case that 𝛿 = read𝑧𝑏 [𝑧𝑜] 𝑏 ←[𝑣 we have, by Conditions 1 and 2, that for all locations 𝑧′
𝑏
such

that accessible(𝑆 ′0, 𝑧′𝑏), 𝑆0 (𝑧
′
𝑏
) = 𝑆 ′0 (𝑧′𝑏). By Condition 3 we then have that {𝑧

′
𝑏
| accessible(𝑆0, 𝑧′𝑏)} =

{𝑧′
𝑏
| accessible(𝑆 ′0, 𝑧′𝑏)}. Therefore the dereference can take the same step read𝑧𝑏 [𝑧𝑜] 𝑏 ← [𝑣 under

𝑆 ′0 and we let 𝑆 ′1 = 𝑆
′
0.

The case for 𝛿 = write𝑧𝑏 [𝑧𝑜] 𝑏 ↦→ 𝑣 is identical except that we let 𝑆 ′1 = 𝑆 ′0 (𝑧𝑏).𝑣 [𝑧0 := 𝑣]. By
Conditions 1 and 2 we have that 𝑆 ′0 (𝑧𝑏).𝑝 = public and therefore we get that inv(𝑆1, 𝑆 ′1).

For 𝛿 = new𝑝 𝑧𝑙𝑒𝑛@𝑧𝑏 we rely on Condition 3, which means that 𝑧𝑏 is also fresh in 𝑆 ′0.
We have by assumption that the application does not contain protect statements so 𝛿 = protect𝑝

is a contradiction. □

Lemma 6. For a classically constant time library Γ ⊨ 𝐿, if Cro (Γ ⊨ 𝐿) ⊨ 𝑆 , Cro (Γ ⊨ 𝐿) ⊨ 𝑆 ′, 𝑇 ∈
traces(⟨𝑆 | 𝐾 ℓ :: 𝑒app⟩), Γ ⊢ read-only 𝑇 , and inv(𝑆, 𝑆 ′), then (⟨𝑆 | 𝐾 ℓ :: 𝑒⟩, ⟨𝑆 ′ | 𝐾 ℓ :: 𝑒⟩) ∈ TJ𝑇 K.

Proof. We proceed by induction on 𝑇 . Wolog we show the case for 𝑇 = 𝐴 ◦ 𝐿 ◦ 𝑇 ′ (the
𝑇 = 𝜏lib�app ⋄ 𝛿app ⋄ (end 𝑣)app�lib case follows identical reasoning as the 𝐴 subtrace.) We split
the proof into instantiating the different subtrace relations.

Case ∃𝑆1, 𝑆 ′1, 𝐾1
ℓ1 , 𝑒1. (𝑆, 𝑆 ′, 𝐾 ℓ , 𝑒, 𝑆1, 𝑆 ′1, 𝐾1

ℓ1 , 𝑒1) ∈ AJ𝐴K: By definitionwe have that𝐴 = 𝜏lib�app⋄
𝛿app ⋄ 𝜏app�lib. By assumption we have that for all 𝜖1 ⋄ 𝜖2 = 𝛿app there exists some 𝑆0, 𝐾0

ℓ0 , and

𝑒0 such that ⟨𝑆 | 𝐾 ℓ :: 𝑒app⟩
𝜖1
==⇒∗ ⟨𝑆0 | 𝐾0

ℓ0 :: 𝑒0app⟩. Lemma 5 then guarantees that the prefix
conditions hold.
To show that the overall application trace conditions hold let 𝜖1 = 𝛿app. By the above logic

we have that there exist 𝑆0, 𝐾0
ℓ0 , and 𝑒0 such that ⟨𝑆 | 𝐾 ℓ :: 𝑒app⟩ 𝛿app

===⇒∗ ⟨𝑆0 | 𝐾0
ℓ0 :: 𝑒0app⟩, ⟨𝑆 ′ |

𝐾 ℓ :: 𝑒app⟩ 𝛿
app

===⇒∗ ⟨𝑆 ′0 | 𝐾0
ℓ0 :: 𝑒0app⟩, and inv(𝑆0, 𝑆 ′0). By assumption we have that there exists some

𝑆1, 𝐾1
ℓ1 , and 𝑒1 such that ⟨𝑆0 | 𝐾0

ℓ0 :: 𝑒0app⟩
𝜏lib�app

=======⇒ ⟨𝑆1 | 𝐾1
ℓ1 :: 𝑒1lib⟩. By Γ ⊢ read-only 𝑇 we

have that 𝜏 = call 𝑧𝑓 and 𝑧𝑓 ∈ dom(Γ). By inversion 𝑒0 = 𝑧𝑓 (𝑣). By Lemma 1, Cro (Γ ⊨ 𝐿) ⊨ 𝑆 ,
and Cro (Γ ⊨ 𝐿) ⊨ 𝑆 we have that 𝑆 (𝑧𝑓) = 𝑆 (𝑧′

𝑓
). The remaining conditions of A then follow

immediately. ■

Case ∃𝑆2, 𝑆 ′2, 𝐾2
ℓ2 , 𝑒2. (𝑆1, 𝑆 ′1, 𝐾1

ℓ1 , 𝑒1, 𝑆2, 𝑆
′
2, 𝐾2

ℓ2 , 𝑒2) ∈ LJ𝐿K: By definition we have that 𝐿 =

𝜏app�lib ⋄ 𝛿lib ⋄ 𝜏2lib�app. By the above we have that

⟨𝑆 | 𝐾 ℓ :: 𝑒app⟩ 𝛿
app⋄𝜏app�lib

============⇒∗ ⟨𝑆1 | 𝐾1
ℓ1 :: 𝑒1lib⟩

and

⟨𝑆 ′ | 𝐾 ℓ :: 𝑒app⟩ 𝛿
app⋄𝜏app�lib

============⇒∗ ⟨𝑆 ′1 | 𝐾1
ℓ1 :: 𝑒1lib⟩.

1:38 M. Kolosick, B. Shivakumar, S. Cauligi, M. Patrignani, M. Vassena, R. Jhala, D. Stefan

By assumption we have that ⟨𝑆1 | 𝐾1
ℓ1 :: 𝑒1lib⟩

𝛿lib⋄𝜏2lib�app

============⇒∗ ⟨𝑆2 | 𝐾2
ℓ2 :: 𝑒2app⟩ By Γ ⊢ read-only𝑇

we have that 𝜏 = call 𝑧𝑓 where 𝑧𝑓 ∈ cod(Cro (Γ ⊨ 𝐿)). We may therefore apply the assumption
that 𝐿 is classically constant time and Lemma 3 to get that there exist 𝑆 ′2, 𝐾2

ℓ2 , 𝑒2, and 𝛿 ′ such that

⟨𝑆 ′1 | 𝐾1
ℓ1 :: 𝑒1lib⟩

𝛿 ′lib⋄𝜏2lib�app

=============⇒∗ ⟨𝑆 ′2 | 𝐾2
ℓ2 :: 𝑒2app⟩ where ct(𝛿 ′lib) = ct(𝛿 ′lib). inv(𝑆2, 𝑆 ′2) follows

by the fact that new events must be the same due to the constant timeness and Lemma 4. ■

Case (⟨𝑆2 | 𝐾2
ℓ2 :: 𝑒2⟩, ⟨𝑆 ′2 | 𝐾2

ℓ2 :: 𝑒2⟩) ∈ TJ𝑇 ′K: By the prior states being in L we have that
inv(𝑆2, 𝑆 ′2). By inversion on Γ ⊢ read-only 𝑇 we have that Γ ⊢ read-only 𝑇 ′. By Lemma 1 Cro (Γ ⊨
𝐿) ⊨ 𝑆 and Cro (Γ ⊨ 𝐿) ⊨ 𝑆 . We then apply our inductive hypothesis for 𝑇 ′ and our proof is
complete. ■

□

Lemma 7. For a classically constant time library Γ ⊨ 𝐿, secret context Δ, read-only application
Γ,Δ ⊨ (𝐻, 𝑒), and initial states Cro (Γ ⊨ 𝐿) | Δ | 𝐻 ⊨ 𝑆0 = 𝑆 ′0, for all 𝑇 ∈ traces(⟨𝑆0 [Δ] [Cro (Γ ⊨ 𝐿)] |
𝑒 [Δ] [Cro (Γ ⊨ 𝐿)]⟩),
(⟨𝑆0 [Δ] [Cro (Γ ⊨ 𝐿)] | 𝑒 [Δ] [Cro (Γ ⊨ 𝐿)]⟩, ⟨𝑆 ′0 [Δ] [Cro (Γ ⊨ 𝐿)] | 𝑒 [Δ] [Cro (Γ ⊨ 𝐿)]⟩) ∈ TJ𝑇 K.

Proof. We first show that inv(𝑆0 [Δ] [Cro (Γ ⊨ 𝐿)], 𝑆 ′0 [Δ] [Cro (Γ ⊨ 𝐿)]). Condition 3 holds by
inversion on 𝐿 | Δ | 𝐻 ⊨ 𝑆0 = 𝑆 ′0. Condition 2 holds by inversion on Δ | 𝐻 ⊨protected 𝑆0 = 𝑆 ′0.
Condition 1 holds by inversion on 𝐿 | Δ | 𝐻 ⊨ 𝑆0 = 𝑆 ′0. By assumption and Lemma 2 we have that
Γ ⊢ read-only 𝑇 . Our goal then follows by Lemma 6. □

Lemma 8 (FTLR). If (⟨𝑆 | 𝐾 ℓ :: 𝑒⟩, ⟨𝑆 ′ | 𝐾 ℓ :: 𝑒⟩) ∈ TJ𝑇 K, then 𝑇 ∈ traces(⟨𝑆 | 𝐾 ℓ :: 𝑒app⟩) and
there exists a trace 𝑇 ′ ∈ traces(⟨𝑆 ′ | 𝐾 ℓ :: 𝑒app⟩) such that ct(𝑇) = ct(𝑇 ′).

Proof. By induction on 𝑇 . □

Theorem 2 (Cro guarantees read-only robust constant time). If Γ ⊨ 𝐿 is classically constant
time and does not contain any protect𝑝 subterms, then Cro (Γ ⊨ 𝐿) is robustly constant time for
read-only attackers (that do not contain protect𝑝).

Proof. By Lemma 6 and Lemma 8. □

D.2 Speculative protections

For this section we consider a fixed speculator.

Definition 14. We say a step ⟨Φ1 | 𝑒1⟩↩
𝛿−→→⟨Φ2 | 𝑒2⟩ is speculating if Φ1 .Ξ ≠ • and Φ2.Ξ ≠ •. We

say a subtrace ⟨Φ1 | 𝑒1⟩ ↩
𝛿−→→∗ ⟨Φ2 | 𝑒2⟩ is speculating if all steps from ⟨Φ1 | 𝑒1⟩ to ⟨Φ2 | 𝑒2⟩ along 𝛿

are speculating.

𝜎 ::= (𝛿, N) non-speculative trace
| (𝛿, S) speculatively rolled-back trace
| [𝜎, 𝛿] speculatively committed trace

with 𝛿 speculated on

Σ ::= (𝜖, N)
| (𝛿, S)

Robust Constant-Time Cryptography 1:39

| [Σ, 𝜖]

crunch : 𝜎 → 𝛿

crunch : Σ→ 𝛿

crunch (•) ≜ •
crunch ((𝛿, N) :: 𝜎) ≜ 𝛿 ⋄ crunch(𝜎)
crunch

(
(𝛿, S) :: 𝜎

)
≜ 0 :: 𝛿 ⋄ 0 :: crunch(𝜎)

crunch

(
[𝜎, 𝛿] :: 𝜎 ′

)
≜ 0 :: crunch(𝜎) ⋄ 𝛿 ⋄ crunch(𝜎 ′)

crunch

(
Σ
)
≜ crunch

(
unlabel(Σ)

)
nonspec : Σ→ 𝜖

nonspec (•) ≜ •
nonspec

(
(𝜖, N) :: Σ

)
≜ 𝜖 :: nonspec

(
Σ
)

nonspec

(
(𝛿, S) :: Σ

)
≜ nonspec

(
Σ
)

nonspec

(
[Σ, 𝜖] :: Σ′

)
≜ 𝜖 ⋄ nonspec(Σ) ⋄ nonspec(Σ′)

specValid Ξ

specValid •
specValid (addEvents(Ξ, 𝛿 ⋄ 𝜇))

specValid (𝑆, 𝑒, 𝛿, 𝜇) :: Ξ

(⟨Φ | 𝑒⟩ ↩𝛿−→→+ ⟨Φ | 𝑒⟩) |S = 𝜎

length(Φ1.Ξ) = length(Φ2.Ξ)

(⟨Φ1 | 𝑒1⟩↩
𝛿−→→⟨Φ2 | 𝑒2⟩) |S = (𝛿, N)

length(Φ1 .Ξ) + 1 = length(Φ2.Ξ) = length(Φ3.Ξ) = length(Φ4 .Ξ) + 1

Φ3.Ξ = (Φ1.𝑆, 𝑒1, 𝛿3, 𝜇) :: Ξ (⟨Φ2 | 𝑒2⟩ ↩
𝛿2−→→∗ ⟨Φ3 | 𝑒3⟩) |S∗ = 𝜎

(⟨Φ1 | 𝑒1⟩↩
0−→→⟨Φ2 | 𝑒2⟩ ↩

𝛿2−→→∗ ⟨Φ3 | 𝑒3⟩↩
𝛿3−→→⟨Φ4 | 𝑒4⟩) |S = [𝜎, 𝛿3]

length(Φ1 .Ξ) + 1 = length(Φ2.Ξ) = length(Φ3.Ξ) = length(Φ4 .Ξ) + 1

Φ3.Ξ =
�(Φ1.𝑆, 𝑒1, 𝛿) :: Ξ (⟨Φ2 | 𝑒2⟩ ↩

𝛿2−→→∗ ⟨Φ3 | 𝑒3⟩) |S∗ = 𝜎

(⟨Φ1 | 𝑒1⟩↩
0−→→⟨Φ2 | 𝑒2⟩ ↩

𝛿2−→→∗ ⟨Φ3 | 𝑒3⟩↩
0−→→⟨Φ4 | 𝑒1⟩) |S = (crunch(𝜎), S)

1:40 M. Kolosick, B. Shivakumar, S. Cauligi, M. Patrignani, M. Vassena, R. Jhala, D. Stefan

(⟨Φ | 𝑒⟩ ↩𝛿−→→∗ ⟨Φ | 𝑒⟩) |S∗ = 𝜎

(⟨Φ1 | 𝑒1⟩ ↩
•−→→0 ⟨Φ1 | 𝑒1⟩) |S∗ = •

(⟨Φ1 | 𝑒1⟩ ↩
𝛿1−→→+ ⟨Φ2 | 𝑒2⟩) |S = 𝜎1 (⟨Φ2 | 𝑒2⟩ ↩

𝛿2−→→∗ ⟨Φ3 | 𝑒3⟩) |S∗ = 𝜎2

(⟨Φ1 | 𝑒1⟩ ↩
𝛿1−→→+ ⟨Φ2 | 𝑒2⟩ ↩

𝛿2−→→∗ ⟨Φ3 | 𝑒3⟩) |S∗ = 𝜎1 :: 𝜎2

last-nonspec : Σ ⇀ 𝜖

(
(𝜖, N) :: Σ

)
≜

{
𝜖′ when last-nonspec

(
Σ
)
= 𝜖′

𝜖 otherwise
last-nonspec

(
(𝛿, S) :: Σ

)
≜ last-nonspec

(
Σ
)

last-nonspec
(
[Σ, 𝜖] :: Σ′

)
≜


𝜖′ when last-nonspec

(
Σ′
)
= 𝜖′

𝜖′ when last-nonspec
(
Σ
)
= 𝜖′

𝜖 when last(𝜖) = 𝜖

label : 𝜖 → ℓ

label : Σ→ ℓ

labelℓ : Σ→ ℓ

label

(
𝛿 ℓ
)
≜ ℓ

label

(
𝜏 ℓ�ℓ

′)
≜ ℓ ′

label (•) ≜ app

label

(
Σ
)
≜ label

(
last-nonspec

(
Σ
))

labelℓ (Σ) ≜
{
label(𝜖) when last-nonspec (Σ :: •) = 𝜖
ℓ otherwise

⟨Φ | 𝐾 ℓ :: 𝑒ℓ⟩ Σ−→ ⟨Φ | 𝐾 ℓ :: 𝑒ℓ⟩

⟨Φ1 .𝑆 | 𝐾1
ℓ𝐾1 :: 𝑒1ℓ1⟩

nonspec(Σ)
==========⇒∗ ⟨Φ2 .𝑆 | 𝐾2

ℓ𝐾2 :: 𝑒2labelℓ1 (Σ)⟩

⟨Φ1 | 𝐾1 :: 𝑒1⟩ ↩
crunch(Σ)
−−−−−−−→→∗ ⟨Φ2 | 𝐾2 :: 𝑒2⟩

(⟨Φ1 | 𝐾1 :: 𝑒1⟩ ↩
crunch(Σ)
−−−−−−−→→∗ ⟨Φ2 | 𝐾2 :: 𝑒2⟩) |S = unlabel(Σ)

⟨Φ1 | 𝐾1
ℓ𝐾1 :: 𝑒1ℓ1⟩

Σ−→ ⟨Φ2 | 𝐾2
ℓ𝐾2 :: 𝑒 labelℓ1 (Σ)⟩

Lemma 9. If ⟨Φ1 | 𝐾1 :: 𝑒1⟩ ↩
𝛿−→→∗ ⟨Φ2 | 𝐾2 :: 𝑒2⟩ and (⟨Φ1 | 𝐾1 :: 𝑒1⟩ ↩

𝛿−→→∗ ⟨Φ2 | 𝐾2 :: 𝑒2⟩) |S = 𝜎 ,
then Φ2.𝑆 = commit(Φ1 .𝑆, nonspec(𝜎)).

Robust Constant-Time Cryptography 1:41

Proof. By simultaneous induction on (⟨Φ1 | 𝐾1 :: 𝑒1⟩ ↩
𝛿−→→∗ ⟨Φ2 | 𝐾2 :: 𝑒2⟩) |S = 𝜎 and ⟨Φ1 |

𝐾1 :: 𝑒1⟩ ↩
𝛿−→→∗ ⟨Φ2 | 𝐾2 :: 𝑒2⟩ □

Lemma 10. If (⟨Φ1 | 𝐾1 :: 𝑒1⟩ ↩
𝛿−→→∗ ⟨Φ2 | 𝐾2 :: 𝑒2⟩) |S = 𝜎 , then 𝛿 = crunch(𝜎).

Proof. By induction on (⟨Φ1 | 𝐾1 :: 𝑒1⟩ ↩
𝛿−→→∗ ⟨Φ2 | 𝐾2 :: 𝑒2⟩) |S = 𝜎 . □

Lemma 11. If (⟨Φ1 | 𝐾1 :: 𝑒1⟩ ↩
𝛿−→→∗ ⟨Φ2 | 𝐾2 :: 𝑒2⟩) |S∗ = 𝜎1 and

(⟨Φ1 | 𝐾1 :: 𝑒1⟩ ↩
𝛿−→→∗ ⟨Φ2 | 𝐾2 :: 𝑒2⟩) |S∗ = 𝜎2,

then 𝜎1 = 𝜎2.

Proof. By induction on the derivation of 𝜎1. □

Lemma 12. If ⟨Φ1 | 𝐾1 :: 𝑒1⟩ ↩
𝛿−→→∗ ⟨Φ2 | 𝐾2 :: 𝑒2⟩ and Φ1.Ξ = Φ2.Ξ = •, then there exists a unique 𝜎

such that (⟨Φ1 | 𝑒1⟩ ↩
𝛿−→→∗ ⟨Φ2 | 𝑒2⟩) |S∗ = 𝜎 .

Proof. Existence follows by induction on the operational semantics with the state of specValidΞ
as an invariant. Uniqueness follows by Lemma 11. □

Lemma 13. If ⟨Φ1 | 𝐾1 :: 𝑒1⟩ ↩
𝛿−→→∗ ⟨Φ2 | 𝐾2 :: 𝑒2⟩ and Φ1.Ξ = Φ2.Ξ = •, then for all ℓ𝐾1 and ℓ1 there

exist unique Σ, and ℓ𝐾2 such that ⟨Φ1 | 𝐾1
ℓ𝐾1 :: 𝑒1ℓ1⟩

Σ−→∗ ⟨Φ2 | 𝐾2
ℓ𝐾2 :: 𝑒2label(Σ)⟩ and crunch(Σ) = 𝛿 .

Proof. By Lemma 12 there exists a unique 𝜎 such that (⟨Φ1 | 𝑒1⟩ ↩
𝛿−→→∗ ⟨Φ2 | 𝑒2⟩) |S∗ = 𝜎 . We

construct the labels and non-speculative reduction by induction on 𝜎 . The remaining conditions
follow by assumption and Lemma 10 □

Lemma 14 (Speculation can’t change protection). If ⟨Φ0 | 𝑒0⟩↩
0−→→⟨Φ1 | 𝑒1⟩ ↩

𝛿−→→∗ ⟨Φ2 | 𝑒2⟩ such

that Φ0.Ξ = •, Φ0.𝑆 .𝑝 = public, Φ1.Ξ ≠ •, and the subtrace ⟨Φ1 | 𝑒1⟩ ↩
𝛿−→→∗ ⟨Φ2 | 𝑒2⟩ is speculating,

then read𝑏 𝑣 ← [𝑧𝑏 [𝑧𝑜] ∈ 𝛿 ⇒ Φ0.𝑆 (𝑧𝑏) ≠ protected and write𝑏 𝑣 ↦→ 𝑧𝑏 [𝑧𝑜] ∈ 𝛿 ⇒ Φ0.𝑆 (𝑧𝑏) ≠
protected.

Proof. By induction on the operational semantics with the invariant that that if Φ2.𝑆 .𝑝 =

protected, then protect𝑝 exists in Φ2.Ξ. □

Definition 15. We define our speculative state invariant, sinv(Φ,Φ′) as follows:
(1) inv(Φ.𝑆,Φ′ .𝑆)
(2) Φ.𝑎 = Φ′ .𝑎
(3) Φ.Ξ = Φ′ .Ξ

EappJ(𝜖, N)K ≜
(Φ, 𝐾 ℓ , 𝑒,Φ′, 𝐾 ℓ , 𝑒,

Φ1, 𝐾1
ℓ1 ,Φ′1, 𝑒1, 𝐾1

ℓ1 , 𝑒1)

��������
⟨Φ | 𝐾 ℓ :: 𝑒app⟩

(𝜖,N)
−−−−−→ ⟨Φ1 | 𝐾1

ℓ1 :: 𝑒1app⟩

⟨Φ′ | 𝐾 ℓ :: 𝑒app⟩
(𝜖,N)
−−−−−→ ⟨Φ′1 | 𝐾1

ℓ1 :: 𝑒1app⟩
sinv(Φ1,Φ

′
1)



1:42 M. Kolosick, B. Shivakumar, S. Cauligi, M. Patrignani, M. Vassena, R. Jhala, D. Stefan

ElibJ(𝛿lib, N)K ≜
(Φ, 𝐾 ℓ , 𝑒,Φ′, 𝐾 ′ℓ ′ , 𝑒′,

Φ1, 𝐾1
ℓ1 , 𝑒1,Φ

′
1, 𝐾
′
1
ℓ ′1 , 𝑒′1)

�����������
∃𝛿 ′ .

⟨Φ | 𝐾 ℓ :: 𝑒lib⟩
(𝛿lib,N)
−−−−−−−→ ⟨Φ1 | 𝐾1

ℓ1 :: 𝑒1lib⟩

⟨Φ′ | 𝐾 ′ℓ ′ :: 𝑒′lib⟩
(𝛿 ′lib,N)
−−−−−−−→ ⟨Φ′1 | 𝐾 ′1

ℓ ′1 :: 𝑒′1
lib⟩

ct(𝛿) = ct(𝛿 ′)


ElibJ(𝜏lib�app, N)K ≜

(Φ, 𝐾 ℓ , 𝑒,Φ′, 𝐾 ℓ , 𝑒,

Φ1, 𝐾1
ℓ1 , 𝑒1,Φ

′
1, 𝐾1

ℓ1 , 𝑒1)

���������
⟨Φ | 𝐾 ℓ :: 𝑒lib⟩

(𝜏lib�app,N)
−−−−−−−−−−→ ⟨Φ1 | 𝐾1

ℓ1 :: 𝑒1app⟩

⟨Φ′ | 𝐾 ℓ :: 𝑒lib⟩
(𝜏lib�app,N)
−−−−−−−−−−→ ⟨Φ′1 | 𝐾1

ℓ1 :: 𝑒1app⟩
sinv(Φ1,Φ

′
1)


EappJ(𝛿, S)K ≜

(Φ, 𝐾 ℓ , 𝑒,Φ′, 𝐾 ℓ , 𝑒,
Φ1, 𝐾 ℓ ,𝑒,Φ

′
1, 𝐾

ℓ , 𝑒)

���������
⟨Φ | 𝐾 ℓ :: 𝑒app⟩

(𝛿, S)
−−−−→ ⟨Φ1 | 𝐾 ℓ :: 𝑒app⟩

⟨Φ′ | 𝐾 ℓ :: 𝑒app⟩
(𝛿, S)
−−−−→ ⟨Φ′1 | 𝐾 ℓ :: 𝑒app⟩

sinv(Φ1,Φ
′
1)


ElibJ(𝛿, S)K ≜

(Φ, 𝐾 ℓ , 𝑒,Φ′, 𝐾 ′ℓ ′ , 𝑒′,

Φ1, 𝐾 ℓ , 𝑒,Φ
′
1, 𝐾
′ℓ ′ , 𝑒′)

������������

∃𝛿 ′ .

⟨Φ | 𝐾 ℓ :: 𝑒lib⟩
(𝛿, S)
−−−−→ ⟨Φ1 | 𝐾 ℓ :: 𝑒lib⟩

⟨Φ′ | 𝐾 ′ℓ ′ :: 𝑒′lib⟩
(𝛿 ′, S)
−−−−−→ ⟨Φ′1 | 𝐾 ′ℓ

′ :: 𝑒′lib⟩
ct(𝛿) = ct(𝛿 ′)


EappJ[Σ, 𝜖]K ≜

(Φ, 𝐾 ℓ , 𝑒,Φ′, 𝐾 ℓ , 𝑒,

Φ1, 𝐾1
ℓ1 , 𝑒1,Φ

′
1, 𝐾1

ℓ1 , 𝑒1)

���������������

∃𝜖′ .

⟨Φ | 𝐾 ℓ :: 𝑒app⟩
[Σ,𝜖]
−−−−→ ⟨Φ1 | 𝐾1

ℓ1 :: 𝑒1label([Σ,𝜖])⟩

⟨Φ′ | 𝐾 ℓ :: 𝑒app⟩
[Σ,𝜖 ′]
−−−−→ ⟨Φ′1 | 𝐾1

ℓ1 :: 𝑒1label([Σ,𝜖])⟩
labelapp ([Σ, 𝜖]) = app⇒ sinv(Φ1,Φ

′
1)

ct(𝜖) = ct(𝜖′)



Robust Constant-Time Cryptography 1:43

ElibJ[Σ, 𝜖]K ≜
(Φ, 𝐾 ℓ , 𝑒,Φ′, 𝐾 ′ℓ ′ , 𝑒′,

Φ1, 𝐾1
ℓ1 , 𝑒1,Φ

′
1, 𝐾
′
1
ℓ ′1 , 𝑒′1)

������������

∃Σ′, 𝜖′ .

⟨Φ | 𝐾 ℓ :: 𝑒lib⟩
[Σ,𝜖]
−−−−→ ⟨Φ1 | 𝐾1

ℓ1 :: 𝑒1lib⟩

⟨Φ′ | 𝐾 ′ℓ ′ :: 𝑒′lib⟩
[Σ′,𝜖 ′]
−−−−−→ ⟨Φ′1 | 𝐾 ′1

ℓ ′1 :: 𝑒′1
lib⟩

ct(crunch([Σ, 𝜖])) = ct(crunch([Σ′, 𝜖′]))


SℓJΣ :: Σ′K ≜

(⟨Φ | 𝐾 ℓ𝐾 :: 𝑒ℓ⟩, ⟨Φ′ | 𝐾 ′ℓ ′𝐾 :: 𝑒′ℓ⟩)

������������
∃Φ1, 𝐾1

ℓ𝐾1 , 𝑒1,Φ
′
1, 𝐾
′
1
ℓ ′
𝐾1 , 𝑒′1,Φ2, 𝐾2

ℓ𝐾2 , 𝑒2,Φ
′
2, 𝐾
′
2
ℓ ′
𝐾2 , 𝑒′2.

(Φ, 𝐾 ℓ𝐾 , 𝑒,Φ′, 𝐾 ′ℓ ′𝐾 , 𝑒′,

Φ1, 𝐾1
ℓ𝐾1 , 𝑒1,Φ

′
1, 𝐾
′
1
ℓ ′
𝐾1 , 𝑒′1) ∈ EℓJΣK

(Φ1, Φ
′
1, 𝐾1

ℓ𝐾1 , 𝑒1, Φ2, Φ
′
2, 𝐾2

ℓ𝐾2 , 𝑒2) ∈ Slabel(Σ)JΣ′K


SappJ•K ≜

{
(⟨Φ | 𝐾 ℓ𝐾 :: 𝑒app⟩, ⟨Φ′ | 𝐾 ℓ𝐾 :: 𝑒app⟩)

��� sinv(Φ,Φ′)}
SlibJ•K ≜

{
(⟨Φ | 𝐾 ℓ𝐾 :: 𝑒lib⟩, ⟨Φ′ | 𝐾 ′ℓ ′𝐾 :: 𝑒′lib⟩)

}

Lemma 15 (Cspec preserves classic speculative constant time). If Γ ⊨ 𝐿 is classically specula-
tive constant time then CspecΓ ⊨ 𝐿 is classically speculative constant time.

Proof. By induction on the compiler. □

Lemma 16 (Cspec prevents speculative returns). If Γ ⊨ 𝐿 is classically speculative constant time
with respect to a speculation oracle spec : 𝐴 × 𝑆 × 𝑒 → 𝐴 × 𝑑 , then for all secret contexts Δ, classical
“applications” Γ,Δ ⊢ (𝐻, 𝑒Γ), initial states 𝑆0, 𝑆 ′0 such that 𝐿 | Δ | 𝐻 ⊨ 𝑆0, microarchitectural states
𝑎 : 𝐴, Φ0 = {𝑆 = 𝑆0 [Δ] [𝐿], 𝑎 = 𝑎,Ξ = •}, and 𝑒0 = 𝑒Γ [Δ] [Cspec (Γ ⊨ 𝐿)], then begin ⋄ 𝛿 ⋄ end 𝑣 ∈
specTraces(⟨Φ0 | 𝑒0⟩) implies that there exists a Σ such that nonspec(Σ) = begin ⋄ 𝛿 ⋄ end 𝑣 and the
tail of Σ is of the form (fencelib, N) ⋄ (𝛿1, S)∗ ⋄ (ret 𝑣lib�app, N) ⋄ (end 𝑣app�lib, N) or (fencelib,
N) ⋄ [(𝛿1, S)∗ ⋄ (ret 𝑣lib�app, N), 0] ⋄ (end 𝑣app�lib, N).

Proof. By induction on the compiler. □

Lemma 17 (S extension). If

⟨Φ | • :: 𝑒app⟩ Σ1−−→∗ ⟨Φ1 | 𝐾1
ℓ1 :: 𝑒1label(Σ1)⟩

Σ2−−→ ⟨Φ2 | 𝐾2
ℓ2 :: 𝑒2

label
label(Σ1)

(Σ2)⟩
and (⟨Φ | • :: 𝑒app⟩, ⟨Φ′ | • :: 𝑒app⟩) ∈ SappJΣ1K, then if

(1) There exist Σ′1, Φ
′
1, 𝐾

′
1
ℓ ′1 , and 𝑒′1 such that ⟨Φ′ | • :: 𝑒app⟩

Σ′1−−→∗ ⟨Φ′1 | 𝐾 ′1
ℓ ′1 :: 𝑒′1

label(Σ1)⟩.
(2) If label(Σ1) = app, then 𝐾1

ℓ1 :: 𝑒1 = 𝐾 ′1
ℓ ′1 :: 𝑒′1 and sinv(Φ1,Φ

′
1).

(3) Let ⟨Φ.𝑆 | • :: 𝑒app⟩
𝛿0⋄(call 𝑧𝑓)app�lib⋄𝛿1
===================⇒∗ ⟨Φ1.𝑆 | 𝐾1

ℓ1 :: 𝑒1label(Σ1)⟩ such that (call 𝑧′𝑓)
app�lib ∉

𝛿1 and 𝛿0 ⋄ (call 𝑧𝑓)app�lib ⋄ 𝛿1 = nonspec(Σ1). Then ⟨Φ′ .𝑆 | • :: 𝑒app⟩
𝛿 ′0⋄(call 𝑧𝑓)

app�lib⋄𝛿 ′1
===================⇒∗

1:44 M. Kolosick, B. Shivakumar, S. Cauligi, M. Patrignani, M. Vassena, R. Jhala, D. Stefan

⟨Φ′1.𝑆 | 𝐾 ′1
ℓ ′1 :: 𝑒′1

label(Σ1)⟩ such that (call 𝑧′
𝑓
)app�lib ∉ 𝛿 ′1 and 𝛿

′
0 ⋄ (call 𝑧𝑓)

app�lib ⋄ 𝛿 ′1 =

nonspec(Σ′1).
(4) ct(crunch(Σ1)) = ct(crunch(Σ′1))

imply that there exist Φ′2,𝐾
′
2
ℓ ′2 , and 𝑒′2 such that (Φ1, 𝐾1

ℓ1 , 𝑒1, Φ
′
1, 𝐾

′
1
ℓ ′1 , 𝑒′1, Φ2, 𝐾2

ℓ2 , 𝑒2, Φ
′
2, 𝐾

′
2
ℓ ′2 , 𝑒′2) ∈

E
label(Σ1)JΣ2K, then (⟨Φ | • :: 𝑒app⟩, ⟨Φ′ | • :: 𝑒app⟩) ∈ SappJΣ1 ⋄ Σ2K.

Proof. By induction on Σ1. □

Lemma 18. If ⟨Φ1 | 𝐾1 :: 𝑒1⟩↩
0−→→⟨Φ2 | 𝐾2 :: 𝑒2⟩ ↩

𝛿−→→∗ ⟨Φ3 | 𝐾3 :: 𝑒3⟩, Φ1.Ξ = •, Φ2 .Ξ ≠ •,

⟨Φ2 | 𝐾2 :: 𝑒2⟩ ↩
𝛿−→→∗ ⟨Φ3 | 𝐾3 :: 𝑒3⟩ is speculating, and sinv(Φ1,Φ

′
1), then ⟨Φ′1 | 𝐾1 :: 𝑒1⟩↩

0−→→⟨Φ′2 |

𝐾2 :: 𝑒2⟩ ↩
𝛿−→→∗ ⟨Φ′3 | 𝐾3 :: 𝑒3⟩ and sinv(Φ3,Φ

′
3).

Proof. We proceed by induction on 𝛿 . We have by sinv(Φ1,Φ
′
1) that ⟨Φ′1 | 𝐾1 :: 𝑒1⟩↩

0−→→⟨Φ′2 |

𝐾2 :: 𝑒2⟩, completing our base case. In the case where ⟨Φ1 | 𝐾1 :: 𝑒1⟩↩
0−→→⟨Φ2 | 𝐾2 :: 𝑒2⟩ ↩

𝛿−→→∗ ⟨Φ3 |
𝐾3 :: 𝑒3⟩↩

𝛿3−→→⟨Φ4 | 𝐾4 :: 𝑒4⟩ we must show that sinv(Φ3,Φ
′
3) implies that ⟨Φ′3 | 𝐾3 :: 𝑒3⟩↩

𝛿3−→→⟨Φ′4 |
𝐾4 :: 𝑒4⟩. This follows by case analysis on 𝑒3, the fact that inv(Φ3 .𝑆,Φ

′
3.𝑆), and Lemma 14. □

Lemma 19. For a classically speculatively constant time library Γ ⊨ 𝐿, secret context Δ, memory-safe
application Γ,Δ ⊨ (𝐻, 𝑒𝑎), initial states Cspec (Γ ⊨ 𝐿) | Δ | 𝐻 ⊨ 𝑆0 = 𝑆 ′0, 𝑆 = 𝑆0 [Δ] [Cspec (Γ ⊨ 𝐿)],
𝑆 ′ = 𝑆 ′0 [Δ] [Cspec (Γ ⊨ 𝐿)], Φ = {𝑆 = 𝑆, 𝑎 = 𝑎,Ξ = •}; Φ′ = {𝑆 = 𝑆 ′, 𝑎 = 𝑎,Ξ = •}, and

𝑒 = 𝑒𝑎 [Δ] [Cspec (Γ ⊨ 𝐿)], if ⟨Φ | • :: 𝑒app⟩ Σ−→∗ ⟨Φ1 | 𝐾1
ℓ1 :: 𝑒1label(Σ)⟩, then (⟨Φ | • :: 𝑒app⟩,

⟨Φ′ | • :: 𝑒app⟩) ∈ SappJΣK.

Proof. We proceed by induction on Σ. In the base case we have Σ = •, where sinv(Φ,Φ′) follows
from our assumptions.

In our inductive casewe have Σ = Σ1⋄Σ2 and therefore ⟨Φ | • :: 𝑒app⟩
Σ1−−→∗ ⟨Φ1 | 𝐾1

ℓ1 :: 𝑒1label(Σ1)⟩
Σ2−−→

⟨Φ2 | 𝐾2
ℓ2 :: 𝑒2

label
label(Σ1)

(Σ2)⟩. By our inductive hypothesis we have that (⟨Φ | • :: 𝑒app⟩, ⟨Φ′ | • :: 𝑒app⟩) ∈
SappJΣ1K. By Lemma 17 we may assume that there exist Σ′1, Φ

′
1, 𝐾

′
1
ℓ ′1 , and 𝑒′1 such that ⟨Φ′ |

• :: 𝑒app⟩
Σ′1−−→∗ ⟨Φ′1 | 𝐾 ′1

ℓ ′1 :: 𝑒′1
label(Σ1)⟩ and label(Σ1) = app ⇒ 𝐾1

ℓ1 :: 𝑒1 = 𝐾 ′1
ℓ ′1 :: 𝑒′1 ∧ sinv(Φ1,Φ

′
1).

We must then show that there exist Φ′2, 𝐾
′
2
ℓ ′2 , and 𝑒′2 such that (Φ1, 𝐾1

ℓ1 , 𝑒1, Φ
′
1, 𝐾

′
1
ℓ ′1 , 𝑒′1, Φ2, 𝐾2

ℓ2 ,

𝑒2, Φ
′
2, 𝐾

′
2
ℓ ′2 , 𝑒′2) ∈ E

label(Σ1)JΣ2K.
We proceed by case analysis on label(Σ1) and Σ2. We first consider all of the cases where

label(Σ1) = app. By assumption𝐾1
ℓ1 :: 𝑒1 = 𝐾 ′1

ℓ ′1 :: 𝑒′1 and sinv(Φ1,Φ
′
1). We pick𝐾 ′2

ℓ ′2 :: 𝑒′2 = 𝐾2
ℓ2 :: 𝑒2.

By inversion on ⟨Φ1 | 𝐾1
ℓ1 :: 𝑒1label(Σ1)⟩

Σ2−−→ ⟨Φ2 | 𝐾2
ℓ2 :: 𝑒2

label
label(Σ1)

(Σ2)⟩ we have

(1) ⟨Φ1.𝑆 | 𝐾1
ℓ𝐾1 :: 𝑒1ℓ1⟩

nonspec(Σ)
==========⇒∗ ⟨Φ2.𝑆 | 𝐾2

ℓ𝐾2 :: 𝑒2labelℓ1 (Σ)⟩

(2) ⟨Φ1 | 𝐾1 :: 𝑒1⟩ ↩
crunch(Σ)
−−−−−−−→→∗ ⟨Φ2 | 𝐾2 :: 𝑒2⟩

(3) (⟨Φ1 | 𝐾1 :: 𝑒1⟩ ↩
crunch(Σ)
−−−−−−−→→∗ ⟨Φ2 | 𝐾2 :: 𝑒2⟩) |S = unlabel(Σ)

Case Σ2 = (𝜖, N) : We must show that there exists a Φ′2 such that

(1) ⟨Φ1 | 𝐾1
ℓ1 :: 𝑒1app⟩

(𝜖,N)
−−−−−→ ⟨Φ2 | 𝐾2

ℓ2 :: 𝑒2app⟩

Robust Constant-Time Cryptography 1:45

(2) ⟨Φ′1 | 𝐾1
ℓ1 :: 𝑒1app⟩

(𝜖,N)
−−−−−→ ⟨Φ′2 | 𝐾2

ℓ2 :: 𝑒2app⟩
(3) sinv(Φ2,Φ

′
2)

The first follows immediately by assumption.
For the second we first show that there exists an 𝑆 ′2 such that ⟨Φ′1 .𝑆 | 𝐾1

ℓ𝐾1 :: 𝑒1ℓ1⟩
𝜖
=⇒∗ ⟨𝑆 ′2 |

𝐾2
ℓ𝐾2 :: 𝑒2labelℓ1 ((𝜖,N))⟩. This follows by Lemma 6 and the definitions of T and A. We then let

Φ′2 = {𝑆 = 𝑆 ′2, 𝑎 = spec(Φ1.𝑎, 𝑒1).2,Ξ = Φ2 .Ξ}. ⟨Φ′1 | 𝐾1 :: 𝑒1⟩ ↩
unlabel(𝜖)
−−−−−−−−→→∗ ⟨Φ′2 | 𝐾2 :: 𝑒2⟩ by

the same logic as Lemma 5 (by inversion spec(Φ1.𝑎, 𝑒1) = nonspec so the rule spec-𝛽 applies).

(⟨Φ′1 | 𝐾1 :: 𝑒1⟩ ↩
unlabel(𝜖)
−−−−−−−−→→∗ ⟨Φ′2 | 𝐾2 :: 𝑒2⟩) |S = unlabel(𝜖) by unrolling of definitions and assump-

tion.
The speculative invariant follows by Lemma 6, the definitions of T and A and the fact that

Φ1.𝑎 = Φ′1.𝑎 and Φ1 .Ξ = Φ1.Ξ. ■

Case Σ2 = (𝛿, S) : By inversion we have that ⟨Φ1 | 𝐾1 :: 𝑒1⟩ ↩
0::𝛿−−→→∗ ⟨Φ3 | 𝐾3 :: 𝑒3⟩↩

0−→→⟨Φ2 |

𝐾1 :: 𝑒1⟩. By Lemma 18 we have that ⟨Φ′1 | 𝐾1 :: 𝑒1⟩ ↩
0::𝛿−−→→∗ ⟨Φ′3 | 𝐾3 :: 𝑒3⟩ and sinv(Φ3,Φ

′
3). Therefore

⟨Φ′3 | 𝐾3 :: 𝑒3⟩↩
0−→→⟨Φ′2 | 𝐾1 :: 𝑒1⟩. The other conditions follow immediately. ■

Case Σ2 = [Σ3, 𝜖] : We must show that there exists a 𝜖′ such that ⟨Φ′1 | 𝐾1
ℓ1 :: 𝐾 [𝑒1]app⟩

[Σ,𝜖 ′]
−−−−→

⟨Φ′2 | 𝐾2
ℓ2 :: 𝑒2label([Σ,𝜖])⟩, labelapp ([Σ, 𝜖]) = app⇒ sinv(Φ2,Φ

′
2), and ct(𝜖) = ct(𝜖′).

We case split on whether (call 𝑧𝑓)app�lib ∈ 𝜖 . If it isn’t then we let 𝜖′ = 𝜖 . By inversion we

have that ⟨Φ1 | 𝐾1 :: 𝑒1⟩↩
0−→→⟨Φ3 | 𝐾3 :: 𝑒3⟩ ↩

𝛿−→→∗ ⟨Φ4 | 𝐾4 :: 𝑒4⟩↩
𝜖−→→⟨Φ2 | 𝐾2 :: 𝑒2⟩. By Lemma 6 and

the definitions of T and A on the underlying non-speculative subtrace for 𝑒1 we have that ⟨Φ′1 |

• :: 𝑒1⟩
unlabel(𝜖)
↩−−−−−−−→∗ ⟨Φ′′1 | • :: 𝑣⟩ and therefore ⟨Φ′1 | 𝐾1 :: 𝑒1⟩↩

0−→→⟨Φ′3 | 𝐾3 :: 𝑒3⟩ with sinv(Φ3,Φ
′
3). By

Lemma 18 we have that ⟨Φ′1 | 𝐾1 :: 𝑒1⟩ ↩
0::𝛿−−→→∗ ⟨Φ′4 | 𝐾4 :: 𝑒4⟩ and sinv(Φ3,Φ

′
3). Our goals then follow

immediately.
If (call 𝑧𝑓)app�lib ∈ 𝜖 , then by Lemma 6 we have that there is some underlying non-speculative

trace 𝜖′ such that ct(𝜖) = ct(𝜖′) which contains the entire call into the library. By the definition
of classical constant time, Lemma 4, and sinv(Φ1,Φ

′
1), this call leaves no traces in unprotected

memory (and therefore no reads or writes to unprotected memory may be invalidated). Therefore

we may once again apply the same reasoning to get that ⟨Φ′1 | 𝐾1
ℓ1 :: 𝐾 [𝑒1]app⟩

[Σ,𝜖 ′]
−−−−→ ⟨Φ′2 |

𝐾2
ℓ2 :: 𝑒2label([Σ,𝜖])⟩. ■

We next consider all of the cases where label(Σ1) = lib. By assumption we may let ⟨Φ.𝑆 |

• :: 𝑒app⟩
𝛿0⋄(call 𝑧𝑓)app�lib⋄𝛿1
===================⇒∗ ⟨Φ1 .𝑆 | 𝐾1

ℓ1 :: 𝑒1label(Σ1)⟩ such that (call 𝑧′
𝑓
)app�lib ∉ 𝛿1 and 𝛿0 ⋄

(call 𝑧𝑓)app�lib ⋄ 𝛿1 = nonspec(Σ1) and then have that ⟨Φ′ .𝑆 | • :: 𝑒app⟩
𝛿 ′0⋄(call 𝑧𝑓)

app�lib⋄𝛿 ′1
===================⇒∗

⟨Φ′1.𝑆 | 𝐾 ′1
ℓ ′1 :: 𝑒′1

label(Σ1)⟩ such that (call 𝑧′
𝑓
)app�lib ∉ 𝛿 ′1 and 𝛿

′
0⋄(call 𝑧𝑓)

app�lib⋄𝛿 ′1 = nonspec(Σ′1).
By the assumption that the attacker is memory safe, 𝑧𝑓 ∈ dom(Cspec (Γ ⊨ 𝐿)).

Case Σ2 = (𝛿lib, N) : Follows by the above assumption, the assumption that the library is
classically speculative constant time, and Lemma 15. ■

1:46 M. Kolosick, B. Shivakumar, S. Cauligi, M. Patrignani, M. Vassena, R. Jhala, D. Stefan

Case Σ2 = (𝜏lib�app, N) : Follows by the above assumption, the assumption that the library
is classically speculative constant time, Lemma 15, and the same reasoning using Lemma 4 as in
Lemma 6. ■

Case Σ2 = (𝛿, S) : Follows by the above assumption, the assumption that the library is classi-
cally speculative constant time, Lemma 15, and Lemma 16. ■

Case Σ2 = [Σ3, 𝜖] : Follows by the above assumption, the assumption that the library is classi-
cally speculative constant time, Lemma 15, and Lemma 16. ■

□

Lemma 20 (FTLR). If (⟨Φ | • :: 𝑒app⟩, ⟨Φ′ | • :: 𝑒app⟩) ∈ SappJΣK, then there exist Σ′, Φ1, 𝐾1
ℓ1 , 𝑒1,

Φ′1, 𝐾
′
1
ℓ ′1 , and 𝑒′1 such that ⟨Φ | • :: 𝑒app⟩ Σ−→∗ ⟨Φ1 | 𝐾1

ℓ1 :: 𝑒1label(Σ)⟩ and ⟨Φ′ | • :: 𝑒app⟩
Σ′−→∗ ⟨Φ′1 |

𝐾 ′1
ℓ ′1 :: 𝑒′1

label(Σ)⟩ and ct(crunch(Σ)) = ct(crunch(Σ′)).

Proof. By induction on Σ. □

Theorem 3 (Cspec guarantees robust speculative constant time). If Γ ⊨ 𝐿 is classically
speculative constant time for a speculation oracle spec and does not contain any protect𝑝 subterms,
then Cspec (Γ ⊨ 𝐿) is robustly speculatively constant time (for attackers that do not contain protect𝑝).

Proof. By Lemma 13, Lemma 19, and Lemma 20. □

D.3 Concurrent protections

Theorem 4 (Cro-co guarantees robust constant time for concurrent observers). If Γ ⊨ 𝐿
is classically constant time and does not contain any protect𝑝 subterms, then Cro-co (Γ ⊨ 𝐿) is robustly
constant time for concurrent observers (that do not contain protect𝑝).

Theorem 5 (Cspec-co guarantees robust speculative constant time for concurrent ob-
servers). If Γ ⊨ 𝐿 is classically speculative constant time for a speculation oracle spec and does not
contain any protect𝑝 subterms, then Cspec-co (Γ ⊨ 𝐿) is robustly speculatively constant time (for
attackers that do not contain protect𝑝).

Both proofs exactly follow the structure of their non-concurrent counterparts with the addition
of maintaining the state invariant during library subtraces as well. This ensures that at all times
the only memory that varies is protected from concurrent observers.

E Evaluation additional data

read-only speculative
Size 𝑄1 Median overhead 𝑄3 𝑄1 Median overhead 𝑄3 Baseline cycles
1 0.59% 3.92% 10.07% 0.63% 4.01% 10.18% 7.14e+03
128 0.14% 1.46% 5.00% 0.13% 1.65% 4.99% 1.60e+04
256 0.01% 0.80% 2.67% 0.02% 0.82% 2.65% 2.69e+04
512 -0.03% 0.45% 1.70% 0.00% 0.56% 1.68% 4.93e+04
1024 -0.07% 0.29% 0.98% -0.08% 0.34% 1.05% 9.42e+04
2048 -0.26% 0.16% 0.65% -0.15% 0.15% 0.71% 1.82e+05

Table 17. aead overhead by size

Robust Constant-Time Cryptography 1:47

read-only speculative
Size 𝑄1 Median overhead 𝑄3 𝑄1 Median overhead 𝑄3 Baseline cycles
29 -0.58% 0.50% 0.64% -3.53% 0.65% 3.59% 5.67e+05
59 -0.27% 0.38% 0.69% -3.36% 0.68% 3.85% 5.65e+05
117 -0.07% 0.49% 0.71% -3.67% 0.64% 3.06% 5.59e+05
231 -0.24% 0.38% 0.65% -3.60% 0.58% 3.53% 5.50e+05
453 -0.50% 0.26% 0.72% -3.67% 0.59% 2.97% 9.03e+05
709 -0.70% 0.21% 0.49% -3.60% 0.58% 3.79% 1.13e+06
2711 -0.49% 0.06% 0.73% -3.57% 0.59% 3.53% 3.92e+06
4237 -0.57% -0.09% 0.41% -3.61% 0.48% 3.38% 6.09e+06

Table 18. encrypt overhead by size

read-only speculative
Size 𝑄1 Median overhead 𝑄3 𝑄1 Median overhead 𝑄3 Baseline cycles
29 -1.09% -0.12% 0.96% -0.57% 0.27% 1.83% 2.99e+08
59 -1.20% -0.21% 0.67% -1.05% -0.08% 1.27% 2.99e+08
117 -0.98% -0.22% 0.48% -0.65% -0.04% 1.55% 3.08e+08
231 -1.08% -0.22% 0.50% -0.62% 0.05% 1.88% 3.09e+08
453 -1.16% -0.29% 0.48% -0.96% 0.01% 1.71% 3.09e+08
709 -1.13% -0.26% 0.48% -0.96% -0.04% 1.39% 3.09e+08
2711 -1.22% -0.22% 0.48% -0.99% -0.09% 1.28% 2.99e+08
4237 -1.00% -0.11% 0.67% -1.00% -0.22% 0.97% 3.e+08

Table 19. sign overhead by size

	Abstract
	1 Introduction
	2 Overview
	2.1 Application (attacker) assumptions
	2.2 Robust constant time
	2.3 A robust constant time compiler

	3 Security semantics
	3.1 Non-speculative trace semantics
	3.2 Speculative semantics
	3.3 Concurrent observer semantics

	4 Robust constant time
	4.1 Programs and Traces
	4.2 Robust constant time
	4.3 Attackers

	5 A robust compiler
	5.1 Making libraries robust
	5.2 Proving RoboCop secure

	6 Evaluation
	6.1 Read-only and speculative attackers
	6.2 Concurrent attackers

	7 Limitations
	8 Related Work
	References
	A Language
	B Attacker models
	B.1 Security definitions

	C Compilers
	D Compiler proofs
	D.1 Read-only protections
	D.2 Speculative protections
	D.3 Concurrent protections

	E Evaluation additional data

