
Robust Constant-Time Cryptography
Matthew Kolosick* Basavesh Ammanaghatta Shivakumar† Sunjay Cauligi†

Marco Patrignani‡ Marco Vassena§ Ranjit Jhala* Deian Stefan*
*UC San Diego †MPI-SP ‡University of Trento §Utrecht University

1 Extended abstract
The constant-time property is considered the security stan-
dard for cryptographic code. Code following the constant-
time discipline is free from secret-dependent branches and
memory accesses, and thus avoids leaking secrets through
cache and timing side-channels [2, 5]. Though security against
side-channel attacks is an important concern for secure cryp-
tographic implementations [4], the constant-time property
makes a number of implicit assumptions that are fundamen-
tally at odds with the reality of cryptographic code.
Constant-time is not robust. The first issue with constant-
time is that it is a whole-program property: It relies on the
entirety of the code base being constant-time. But, crypto-
graphic developers do not generally write whole programs;
rather, they provide libraries and specific algorithms for other
application developers to use. As such, developers of secu-
rity libraries must maintain their security guarantees even
when their code is operating within (potentially untrusted)
application contexts.
Constant-time requires memory safety. The whole-pro-
gram nature of constant-time also leads to a second issue:
constant-time requires memory safety of all the running
code. Any memory safety bugs, whether in the library or
the application, will wend their way back to side-channel
leaks of secrets if not direct disclosure. And although crypto-
graphic libraries should (and are) written to be memory-safe,
it’s unfortunately unrealistic to expect the same from every
application that uses each library.

We provide an example from the libsodium cryptographic
library [7]: The code below shows the (abridged) C imple-
mentation of the Salsa20 stream cipher, a constant-time en-
cryption primitive.

1 static int stream_ref(u8 *c, u64 clen, u8 *n, u8 *k)

2 {

3 ... u8 kcopy[32]; ...

4 for (i = 0; i < 32; i++) {

5 kcopy[i] = k[i];

6 }

7 ...

8 while (clen >= 64) {

9 crypto_core_salsa20(c, in, kcopy, NULL); ...

10 }

11 ...

12 sodium_memzero(kcopy, sizeof kcopy);

13 return 0;

14 }

The local buffer kcopy holds a copy of the key, which is left
unchanged by crypto_core_salsa20. The data held in kcopy

is not returned from the function, and (since the algorithm
is constant-time) it is not leaked through any timing side-
channels, so it should not matter if its contents are wiped or
not. However, if an attacker is able to, e.g., exploit a memory
safety vulnerability in the linked application code, theymight
be able to read arbitrary (or targeted) bits from memory,
allowing them to steal the key data from the leftover kcopy.
Clearly, the classical definition of constant-time security is
insufficient to capture this notion.

Different attackers require different defenses. While
libraries like libsodium add memory clearing defenses like
those shown above, others choose to elide them. We argue
that neither of these choices is universally correct: For exam-
ple if libsodium is run in a safe Rust application, clearing the
intermediate memory is unnecessarily defensive; whereas
if a linked application contains memory disclosure bugs,
then a library without such mitigations will be leaving sensi-
tive data vulnerable to an attacker. Ideally, software security
properties for cryptographic code should allow us to reason
about which protections are needed based on the what kinds
of applications it will be linked with.

Spectre complicates everything. Finally, albeit quite un-
surprisingly, speculative execution complicates even further
any discussion about cryptographic software security. Just
as with classical constant-time, we already have a variety
of tools and formal techniques to ensure that cryptographic
code itself is protected from Spectre attacks [5]. However,
these techniques usually come with substantial performance
tradeoffs, making them impractical to use for the entirety of
an application. Due to Spectre attacks, applications that ap-
pear memory-safe can still be tricked into revealing arbitrary
memory data; once again cryptographic libraries must not
only harden their own code, but must also defend against
these speculative vulnerabilities in the application. Although
there has been much work developing constant-time proper-
ties for speculative execution [5], speculative constant-time
is still a whole-program property; it, too, is wholly insuf-
ficient if we want to make guarantees for cryptographic
libraries.

1.1 Robust constant-time
Our answer to this problem is robust constant-time. Like other
robustness properties [1, 3, 6, 8–10], robust constant-time
ensures that a given library does not leak secrets regardless of

1

M. Kolosick, B. Shivakumar, S. Cauligi, M. Patrignani, M. Vassena, R. Jhala, D. Stefan

the linked application. In addition, we capture the varying as-
sumptions about applications—memory safety, the presence
of read gadgets, speculation, etc.—as classes of application
contexts. This allows us to formally examine different mit-
igation strategies when linking against, for instance, safe
Rust applications, buggy C applications, or even applications
full of Spectre gadgets. Our notion of robust constant-time
underpins our formal security model for developing crypto-
graphic libraries: Not only must a library be secure, it must
remain secure even in a given attacker context.
To formally define robust constant-time, we first define

libraries, which we parameterize with a set of API functions
Γ and a set of secrets Δ:
Definition 1 (Γ-Δ-libraries). Given an API context Γ and se-
cret context Δ, we say 𝐿 is a Γ-Δ-library with private context
Γ𝑝 when 𝐿 is a closing substitution for Γ𝑝 ⊎ Γ with codomain
lib-labeled functions well-formed under Δ.

1.2 Characterizing attackers
Since application/attacker assumptions differ, we also param-
eterize our definition of robust constant-time with a class
of contexts to capture the variation in attacker models. For
instance, we can assume an application written in safe Rust
is memory safe, and thus we don’t need to worry about mem-
ory disclosure bugs from the application. We can thus apply
different protections to our library than if we were linking
against applications written in C or where Spectre gadgets
are a concern.
We formally define an attacker in terms of a trace safety

property Γ ⊢ 𝑒 which captures the set of operations the at-
tacker/application is allowed make when interacting with
the library. The four concrete attack classes we define are:
1) Memory-safe attackers, where the application can neither
read nor write out-of-bounds; 2) read-only attackers, where
the application might read out-of-bounds; 3) memory-unsafe
attackers, where the application contains arbitrary memory
safety vulnerabilities; and 4) speculative attackers, where
the application contains Spectre-style vulnerabilities. We de-
fine speculative attackers via a novel, high-level speculative
semantics, parameterized by a speculator that controls when
and how speculation and rollback occur. This definition of
speculation allows us to capture a wide variety of possible
speculative attacks.
As an example, our formal definition of a read-only at-

tacker is as follows:
Definition 2 (Read-only attacker). Γ ⊢ 𝑒 is a read-only at-
tacker if, for all Γ-Δ libraries 𝐿, initial states 𝑆 ⊨ Δ, and
𝛼 ∈ traces(⟨𝑆 | 𝐿(𝑒)⟩), we have (∅, ∅) ⊢ read-only 𝛼 .
The notation (∅, ∅) ⊢ read-only 𝛼 captures that the only
“bad” actions 𝑒 performs are reading out-of-bounds; the defi-
nition of read-only partitions the trace into alternating se-
quences of application and library events. We impose restric-
tions on the application events under the assumption that

the library events are well-behaved, in essence treating the
library as a “context” for executing the application.

We can now define robust constant-time in the context of
read-only attackers:

Definition 3 (Read-only robust constant-time). We say a Γ-
Δ-library 𝐿 is read-only robustly constant-time if, for all read-
only attackers Γ ⊢ 𝑒 and secret states 𝑆 and 𝑆 ′ such that 𝑆 ⊨ Δ
and 𝑆 ′ ⊨ Δ, we have traces(⟨𝑆 | 𝐿(𝑒)⟩) = traces(⟨𝑆 ′ | 𝐿(𝑒)⟩).

We can define the other attacker models similarly. For specu-
lative execution, we further parameterize by a class of spec-
ulators and we relate the speculative traces (those produced
by the speculative semantics).

1.3 A robust constant-time compiler
Robust constant-time makes implicit security guarantees
concrete. For example, with robust constant-time we can
show which functions must clear temporary data—like in
the libsodium example—and which functions can get away
without additional mitigations. Unfortunately, current cryp-
tographic libraries implement these mitigations manually.
As such, they fundamentally limit themselves to a single
attacker model, and must make compromises in their level of
security—always picking the strongest possible protections
would lead to significant (and unnecessary) overhead. For
example, the libsodium developers explicitly chose not to
add speculative protections,1 instead opting for best-effort
protections in such cases to maintain performance.
We instead build a compiler that is aware of robust con-

stant-time and is parameterized by the attacker model, allow-
ing us to compile a library with different mitigations for
different attacker models. Thus the same library code can be
used safely and efficiently whether called from Rust or from
C, or even when Spectre is a concern. During compilation,
our compiler performs a static taint analysis of the library
code to determine which data is secret or can reveal secret
information. Then, depending on the attack model, the com-
piler moves secret data to protected memory regions, clears
accessible temporary secrets, and sanitizes context switches
between the library and application code.

Formally, we assume the cryptographic library is already
classically constant-time; this can be achieved through ex-
isting tools such as Blade [11]. For each attacker class A, we
then have a compiler CA such that compiling a constant-time
library 𝐿 with CA guarantees that it is robustly constant-time
against A:

Theorem 1 (Compiler is secure). Let 𝐿 be a Γ-Δ-library
such that 𝐿 is classically constant-time. Then CA (𝐿) is robustly
constant-time w.r.t. attacker class A.

1libsodium forgoes an appropriate memory fence in their implementation
of sodium_memzero: https://github.com/jedisct1/libsodium/issues/802.

2

https://github.com/jedisct1/libsodium/issues/802

Robust Constant-Time Cryptography

References
[1] Michael Backes, Catalin Hritcu, and Matteo Maffei. 2014. Union, inter-

section and refinement types and reasoning about type disjointness
for secure protocol implementations. Journal of Computer Security 22,
2 (2014), 301–353. https://doi.org/10.3233/JCS-130493

[2] Gilles Barthe, Gustavo Betarte, Juan Diego Campo, and Carlos Luna.
2019. System-Level Non-interference of Constant-Time Cryptography.
Part I: Model. 63, 1 (2019), 1–51. https://doi.org/10.1007/s10817-017-
9441-5

[3] Jesper Bengtson, Karthikeyan Bhargavan, Cédric Fournet, Andrew D.
Gordon, and Sergio Maffeis. 2011. Refinement Types for Secure Im-
plementations. ACM Trans. Program. Lang. Syst. 33, 2, Article 8 (Feb.
2011), 45 pages. https://doi.org/10.1145/1890028.1890031

[4] David Brumley and Dan Boneh. 2005. Remote timing attacks are
practical. 48, 5 (2005), 701–716. https://doi.org/10.1016/j.comnet.2005.
01.010

[5] Sunjay Cauligi, Craig Disselkoen, Daniel Moghimi, Gilles Barthe, and
Deian Stefan. 2022. SoK: Practical Foundations for Software Spectre
Defenses. In 2022 IEEE Symposium on Security and Privacy (SP) (2022-
05). 666–680. https://doi.org/10.1109/SP46214.2022.9833707

[6] Andrew D. Gordon and Alan Jeffrey. 2003. Authenticity by Typing
for Security Protocols. J. Comput. Secur. 11, 4 (July 2003), 451–519.
http://dl.acm.org/citation.cfm?id=959088.959090

[7] LibSodium. 2022. https://doc.libsodium.org/.
[8] Marco Patrignani and Deepak Garg. 2021. Robustly Safe Compilation,

an Efficient Form of Secure Compilation. ACM Trans. Program. Lang.
Syst. 43, 1, Article 1 (Feb 2021), 41 pages. https://doi.org/10.1145/
3436809

[9] Michael Sammler, Deepak Garg, Derek Dreyer, and Tadeusz Litak. 2020.
The high-level benefits of low-level sandboxing. Proc. ACM Program.
Lang. 4, POPL (2020), 32:1–32:32. https://doi.org/10.1145/3371100

[10] David Swasey, Deepak Garg, and Derek Dreyer. 2017. Robust and
compositional verification of object capability patterns. Proc. ACM
Program. Lang. 1, OOPSLA (2017), 89:1–89:26. https://doi.org/10.1145/
3133913

[11] Marco Vassena, Craig Disselkoen, Klaus von Gleissenthall, Sunjay
Cauligi, Rami Gökhan Kici, Ranjit Jhala, Dean M. Tullsen, and Deian
Stefan. 2021. Automatically eliminating speculative leaks from cryp-
tographic code with blade. Proc. ACM Program. Lang. 5, POPL (2021),
1–30. https://doi.org/10.1145/3434330

3

https://doi.org/10.3233/JCS-130493
https://doi.org/10.1007/s10817-017-9441-5
https://doi.org/10.1007/s10817-017-9441-5
https://doi.org/10.1145/1890028.1890031
https://doi.org/10.1016/j.comnet.2005.01.010
https://doi.org/10.1016/j.comnet.2005.01.010
https://doi.org/10.1109/SP46214.2022.9833707
http://dl.acm.org/citation.cfm?id=959088.959090
https://doc.libsodium.org/
https://doi.org/10.1145/3436809
https://doi.org/10.1145/3436809
https://doi.org/10.1145/3371100
https://doi.org/10.1145/3133913
https://doi.org/10.1145/3133913
https://doi.org/10.1145/3434330

	1 Extended abstract
	1.1 Robust constant-time
	1.2 Characterizing attackers
	1.3 A robust constant-time compiler

	References

